Periscoping: **Private Key Distribution for Mixnets**

Shuhao Liu Shenzhen Institute of Computing Sciences May 15, 2024

A joint work with Li Chen (University of Louisiana at Lafayette) and Yuanzhong Fu

Background: Private Messaging

- Confidentiality
 - Data: the content
 - Solution: end-to-end encryption
- Metadata privacy
 - Data: when, with whom, how many...
 - Solution: Mixnets

Background: Mixnets

Background: Mixnets

Decorrelate Users from Messages Anonymity in the user set

Mixnet

4

Background: Free-Route Mixnet

Scalability: a <u>random</u> length-*l* path in *n* available mixes <u>each round</u>

Requirements for Alice

- Maintain <u>ALL</u> n public keys <u>UP-to-DATE</u>
- Select mixes independently randomly, by <u>herself</u>

Challenge at Scale

- Distribute Mixnet information directory DB to all users
 - Each mix has a copy of DB
 - Entry: ID, public key, URL, expiration, certificate
- *n* mixes can support O(n) users: $O(n^2)$ aggregate traffic

• If n > 100,000, sync traffic $\geq 10\%$ total bandwidth usage

Design Objectives

- Scalability: a <u>sublinear</u> download size for each user
 - Users cannot maintain the entire DB
- Threat model
 - Honest mixes are curious
- Security: computational indistinguishability of DB entries

• At least 1 honest mix out of l (same as all free-route mixnets)

Private Information Retrieval

Request DB[i] without revealing the value of i

Request(i)

Response(DB[i])

- Homomorphic encryption-based
 - 25s for $n = 2^{16}$, 400s for $n = 2^{20}$
 - Request: 64KB
 - Response: $\geq 4.7 \times \text{entry size}$

Basic Solution: Multi-Server PIR

- Proven secure if probability=0.5 in 2 request
- $\mathbf{\nabla} O(l)$ download traffic
- $\times O(nl)$ upload traffic

11

How to <u>compress</u> a random set?

Random Set Compression

- Review: PseudoRandom Functions (PRFs)

$$S = \{ y = F(\mathsf{mk}, x) \, | \, x \in L \}$$

% mk is a compressed representation for S.

A master key can generate a multiset S of pseudorandom numbers

D, e.g., $D = \{0, 1, 2, 3\}$

Random Set Compression

- Constrained PseudoRandom Function (cPRF)
 - - $S = \{y = F(\mathsf{mk}, x) | x \in D\}, e.g., D = \{0, 1, 2, 3\}$
 - A constrained key can generate a subset S' of S

% mk is a compressed representation of S. $\forall ck \text{ is a compressed representation of (any) } S' \subseteq S.$

A master key can generate a multiset S of pseudorandom numbers

14

Request Construction

• $\mathbf{\nabla} O(l \log n)$ upload traffic • *DB* has $n = 2^{2d}$ entries. Request 4 instances.

Request Construction

- Further optimizations: key reuse
 - $\mathbf{\nabla} O(l)$ download traffic overhead
 - $\mathbf{\nabla} O(l \log n) \rightarrow O(\log n)$ upload traffic overhead

Experiments: Communication Cost

Download-all Zone Number of Mixes

Periscoping Zone

Experiments: Computational Cost

Stage	#	OnionPIR-	Piggybacking	Periscoping
	Mixes	Tor (s)	(ms)	(ms)
Request	2 ¹⁶	8.8	6.7	15.2
building	2^{20}	11.1	8.3	40.8
Response	2 ¹⁶	60.1	1.4	3.6
Generation	2^{20}	973.4	22.5	59.9
Response	2 ¹⁶	20.3	0.6	0.4
Recovery	2^{20}	21.8	0.6	0.3

Take-Aways

- Problem: Low-cost key distribution for large-scale mixnets
- **Pseudorandom Functions**
- compress sets of random numbers
- Application: privacy-preserving data analytics

Solution: A novel multi-server PIR scheme based on constrained

What is interesting: Constrained Pseudorandom Functions to

