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What is:
  - Wide-Area Data Analytics? 
  - Shuffle?
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Wide-Area Data Analytics
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Large volumes of data are generated, stored and 
processed across geographically distributed DCs.



Existing work focuses on 
Task Placement
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Rethink the root cause of 
inter-DC traffic: Shuffle
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Fetch-based Shuffle
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Problems with Fetch
‣ Under-utilize the inter-datacenter bandwidth 

‣ Start late: beginning of reduce 

‣ Start concurrently: share bandwidth 

‣ Need for refetch 

‣ Possible reduce task failure
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Push-based Shuffle
‣ Bandwidth Utilization
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Push-based Shuffle
‣ Failure Recovery
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Where to Push?
‣ Optional: existing task placement algorithms 

‣ Know reducer placement before hand 

‣ Require prior knowledge 

‣ e.g., predictable jobs, inter-DC available bandwidth 

‣ Our solution: Push/Aggregate
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‣ Send shuffle input to a subset of datacenters with a large 
portion of shuffle input 

‣ Reduce inter-datacenter traffic in future shuffles 

‣ Likely to reduce inter-datacenter traffic at current 
shuffle

Aggregating Shuffle Input
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For any partition of shuffle input, the 
expected inter-datacenter traffic in next 
shuffle is proportional to 
the number of non-colocated reducers.
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Aggregating Shuffle Input
‣ Send shuffle input to a subset of datacenters with a 

large portion of shuffle input 

‣ Reducer is likely to be placed close to shuffle input 

‣ More aggregated data -> less inter-datacenter traffic with 
reasonable task placement
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Implementation in Spark
‣ Requirements: 

‣ Push before writing to disk 

‣ Destined to the aggregator datacenters 

‣ transferTo() as an RDD transformation 

‣ Allow implicit or explicit usage
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Implementation in Spark
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Implementation in Spark
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Implementation in Spark
‣ transferTo() implicit insertion
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Evaluation
‣ Amazon EC2, m3.large instances 

‣ 26 nodes in 6 different locations

�18

4 6

4

4

4

4N. Virginia

N. California

São Paulo

Frankfurt

Singapore

Sydney



Performance
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Take-Away Messages
‣ Push-based shuffle mechanism is beneficial in wide-area 

data analytics 

‣ Aggregating shuffle input to a subset of datacenters is 
likely to help when you have no priori knowledge 

‣ Implementation in Apache Spark as a data transformation 

‣ Performance: reduced shuffle time and its variance
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Thanks! Q&A
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