
Optimizing Shuffle in
Wide-Area Data Analytics
Shuhao Liu*, Hao Wang, Baochun Li
Department of Electrical & Computer Engineering
University of Toronto

What is:
 - Wide-Area Data Analytics?
 - Shuffle?

�2

Wide-Area Data Analytics

�3

N. California

Ireland

Singapore

Oregon

N. Virginia
data 1

data 2

data 3

Large volumes of data are generated, stored and
processed across geographically distributed DCs.

Existing work focuses on
Task Placement

�4

Rethink the root cause of
inter-DC traffic: Shuffle

�5

Fetch-based Shuffle

�6

Mapper 1

Mapper 2

Mapper 3

Reducer 1

Reducer 3

Reducer 2

All-to-all
Communication
at Beginning of
Reduce Tasks

Problems with Fetch
‣ Under-utilize the inter-datacenter bandwidth

‣ Start late: beginning of reduce

‣ Start concurrently: share bandwidth

‣ Need for refetch

‣ Possible reduce task failure

�7

Push-based Shuffle
‣ Bandwidth Utilization

�8

time0 4 8 12 16

time0 4 8 12 16

Map Reduce

Reduce

Map Data
Transfer

Data
Transfer

Reduce

ReduceMap

Shuffle Read

Shuffle Read

Shuffle
Write

Shuffle
Write

Map

Stage N Stage N+1

Stage N Stage N+1

worker A

worker B

worker A

worker B

Shuffle
Read

(a)

(b)

Push-based Shuffle
‣ Failure Recovery

�9

time0 4 8 12 16 20 24

Map Failed
Reduce

Reduce

Refetch ReduceShuffle Read

Shuffle Read

Shuffle
Write

time0 4 8 12 16 20 24

Map

Stage N Stage N+1

worker A

worker B
(a)

Map Failed
Reduce

Reduce

Reduce

Map

Stage N Stage N+1

worker A

worker B
(b)

Data Transfer

Data Transfer

Shuffle
Write

Shuffle
Read

Refetch

Where to Push?
‣ Optional: existing task placement algorithms

‣ Know reducer placement before hand

‣ Require prior knowledge

‣ e.g., predictable jobs, inter-DC available bandwidth

‣ Our solution: Push/Aggregate

�10

‣ Send shuffle input to a subset of datacenters with a large
portion of shuffle input

‣ Reduce inter-datacenter traffic in future shuffles

‣ Likely to reduce inter-datacenter traffic at current
shuffle

Aggregating Shuffle Input

�11

Datacenter A
Receiver
of shuffle

input

Reducer 1

Reducer 3

Datacenter B

Reducer 2

Reducer 4

Reducer 5

Inter-DC
Transfers

For any partition of shuffle input, the
expected inter-datacenter traffic in next
shuffle is proportional to
the number of non-colocated reducers.

�12

Aggregating Shuffle Input
‣ Send shuffle input to a subset of datacenters with a

large portion of shuffle input

‣ Reducer is likely to be placed close to shuffle input

‣ More aggregated data -> less inter-datacenter traffic with
reasonable task placement

�13

Implementation in Spark
‣ Requirements:

‣ Push before writing to disk

‣ Destined to the aggregator datacenters

‣ transferTo() as an RDD transformation

‣ Allow implicit or explicit usage

�14

Implementation in Spark

�15

InputRDD

A1 B1A2

map
A1

map
A2

map
B1

reduce
A1, A2

B1

reduce
A1, A2

B1

InputRDD
 .map(…)
 .reduce(…)
 …

InputRDD
 .map(…)
 .transferTo([A])
 .reduce(…)
 …

InputRDD

A1 B1A2

map
A1

map
A2

map
B1

reduce
A1, A2, Ax

transferTo

A1
transferTo

A2
transferTo

A*

reduce
A1, A2, Ax

(a) (b)

Implementation in Spark

�16

5/12/2016 ScalaWordCount - Details for Job 0

http://54.173.130.234:4040/jobs/job/?id=0 1/2

1.6.1
(/) :JHSH>VYK*V\U[application UI

(Rill)
(/stages/stage/Rill/&
iK$�terminate$true)

+L[HPSZ MVY 1VI �

:[H[\Z! 9U55I5.
(J[P]L :[HNLZ! �
7LUKPUN :[HNLZ! �

Stage �

map

seXuence-ile

map

Åat4ap

Stage �

map

reKuce)`2e`

(J[P]L :[HNLZ �1�

:[HNL

0K +LZJYPW[PVU :\ITP[[LK +\YH[PVU

;HZRZ!

:\JJLLKLK�;V[HS 0UW\[6\[W\[

:O\ɊL

9LHK

:O\ɊL

>YP[L

� ����/��/��
��!��!��

� s �����
4)

����
2)

Jobs (/jobs/) Stages (/stages/) Storage (/storage/) Environment (/environment/)

Executors (/executors/)

�/

5/12/2016 ScalaWordCount - Details for Job 0

http://54.173.130.234:4040/jobs/job/?id=0 1/2

1.6.1 (/) :JHSH>VYK*V\U[application UI

+L[HPSZ MVY 1VI �
:[H[\Z! 9U55I5.
(J[P]L :[HNLZ! �
7LUKPUN :[HNLZ! �

Stage �

transMer;o

sequenceFile

map

map

Åat4ap

Stage �

map

YeKuce)`2e`

(J[P]L :[HNLZ �1�

Jobs (/jobs/) Stages (/stages/) Storage (/storage/) Environment (/environment/)

Executors (/executors/)

(a) (b)

embedded
transformation

Implementation in Spark
‣ transferTo() implicit insertion

�17

DC1 DC2

Origin Code

val InRDD
 = In1+In2

InRDD
 .filter(…)
 .groupByKey(…)
 .collect()

Produced Code

val InRDD
 = In1+In2

InRDD
 .filter(…)
 .transferTo(…)
 .groupByKey(…)
 .collect()

In1

filter

group
ByKey

Shuffle
Input

collect

In2

filter

group
ByKey

Shuffle
Input

DC1 DC2

In1

filter

groupByKey

Shuffle Input

collect

In2

filter

groupByKey

Shuffle Input

transferTo

Processed By
DAGScheduler

transferTo

Evaluation
‣ Amazon EC2, m3.large instances

‣ 26 nodes in 6 different locations

�18

4 6

4

4

4

4N. Virginia

N. California

São Paulo

Frankfurt

Singapore

Sydney

Performance

�19

The lower,
the better

Take-Away Messages
‣ Push-based shuffle mechanism is beneficial in wide-area

data analytics

‣ Aggregating shuffle input to a subset of datacenters is
likely to help when you have no priori knowledge

‣ Implementation in Apache Spark as a data transformation

‣ Performance: reduced shuffle time and its variance

�20

Thanks! Q&A

�21

