
Security-aware Virtual Network Embedding
Shuhao Liu∗, Zhiping Cai∗, Hong Xu†, Ming Xu∗

∗School of Computer, National University of Defense Technology, Changsha, Hunan, P.R. China
†Department of Computer Science, City University of Hong Kong, Hong Kong, P.R. China

Abstract—Network virtualization is a promising technology
to enable multiple architectures to run on a single network.
However, virtualization also introduces additional security vul-
nerabilities that may be exploited by attackers. It is necessary
to ensure that the security requirements of virtual networks are
met by the physical substrate, which however has not received
much attention thus far.

This paper represents an early attempt to consider the security
issue in virtual network embedding, the process of mapping
virtual networks onto physical nodes and links. We model the
security demands of virtual networks by proposing a simple
taxonomy of abstractions, which is enough to meet the variations
of security requirements. Based on the abstraction, we formulate
security-aware virtual network embedding as an optimization
problem, proposing objective functions and mathematical con-
straints which involve both resource and security restrictions.
Then a heuristic algorithm is developed to solve this problem. Our
simulation results indicate its high efficiency and effectiveness.

I. INTRODUCTION

Network virtualization is one of the most important tech-
nologies for next-generation Internet. It is proposed to accel-
erate innovations and to provide more stable services, by en-
abling new protocols and topologies to be rapidly implemented
upon existing network infrastructures [1]. For example, many
research testbeds rely on network virtualization to experiment
new architectures [2].

Making efficient use of the substrate resources in vir-
tualization requires effective techniques of virtual network
embedding [3]. Virtual network embedding is essentially a
resource allocation problem, where a new virtual network,
with constraints on the virtual nodes and links, is mapped
onto specific physical nodes and links in the substrate network.
Because of the combination of node and link constraints, and
the diversity of virtual topologies, virtual network embedding
is NP-hard and computationally intractable even in the offline
cases [4], and many heuristic and meta-heuristic algorithms
have been developed for specific formulations.

In this paper, we study virtual network embedding from
a different perspective. We consider security, which is an
important yet largely overlooked aspect in the literature. To
protect all virtual networks from potential threats and to
guarantee information confidentiality and integrity, in many
cases users have specific security demands and requirements
that have to be satisfied. That is, virtual networks need to be
embedded onto physical nodes and links with a qualified set
of protection mechanisms. For example, each virtual machine
of a virtual network must be allocated onto an end system
with qualified firewalls, certain data encryption functions,

etc. Security requirements intuitively make the problem even
more difficult due to the additional complexity of considering
network resource sharing and vulnerability of current virtual-
ization architectures. However, to our knowledge there is little
work that focuses on the security aspect of virtual network
embedding thus far.

This work represents our first attempt in making virtual
network embedding security-aware. To this end, we make
three concrete contributions. First, we propose a taxonomy
of abstractions to properly model the security demands of
virtual networks. A concept of security level is introduced
to capture the availability of different protection mechanisms
in the substrate. Then the security demand of a virtual node
or link is expressed in terms of security levels, and can be
satisfied with physical resources that can offer the same or a
higher security level. This simple abstraction is general enough
to embrace many distinct forms of security mechanisms and
requirements.

Second, we develop an optimization framework for security-
aware network embedding, by considering both the resources
and security demands of virtual networks. We present three
objective functions, focusing on three different major con-
cerns of network operators. Moreover, apart from resource
constraints, such as node CPU capability and link bandwidth
consumptions, we propose the security constraints, based on
the analysis of vulnerabilities in the current virtual network
architecture.

Third, we propose a novel heuristic algorithm to solve the
security-aware network embedding problem. Given the con-
ventional embedding formulation without security constraints
is NP-hard, our problem with security constraints is even
more complicated. To this end, we design a novel heuristic to
estimate the possibility and capability of each physical node to
host a given virtual node. It involves security satisfaction and
node interconnection relationship in the iterative computations.
Simulation results indicate that our algorithm achieves good
performance with reasonable execution time, and it is practical
in large-scale real-time virtualization systems.

The rest of the paper is organized as follows. Sec. II sum-
marizes related works in the literature. In Sec. III, the security
threats and requirements of virtual networks are discussed.
Then, we introduce our abstraction of security demands and
formulation of the security-aware embedding problems. Sec. V
proposes our algorithm with a novel heuristic. Experiment
results shown in Sec. VI indicate that our method achieves
good performance. Finally, Sec. VII concludes the paper.

II. RELATED WORKS

A rich literature exists for virtual network embedding. Most
work focuses on the general embedding problem and propose
different formulations with specific objectives or constraints.
Yu et al. in [5], for example, propose a seminal algorithm that
enables link splitting and migration. Su et al. in [6] focus
on the energy-aware virtual network embedding problem.
Cai et al. in [7] focus on redeploying virtual resources and
minimizing the upgrading cost in the scenario of evolving
networks.

Security constraints for virtual network embedding have
been briefly discussed in the literature. However, to the best
of our knowledge, none of the existing work has proposed an
effective and applicable way of either formulating or solving
the problem, as we explain below.

In [8], Fischer proposes some security issues of end systems
in a virtual network. Three security demands and constraints
are concluded, but no solution algorithm is presented in the
paper. Also, only virtual node security issues are analyzed.
Link security threats, which need additional mechanisms to
deal with and make the problem more complex, are ignored.

Bays et al. make progress in modeling the security-aware
resource allocation in [9]. The authors enumerate several
examples of security demands, such as link encryption and
exclusiveness among virtual resources. These demands are
then divided into different sets. However, only the correctness
of the proposed model is validated, but no practical algorithm
is developed.

III. THE SECURITY-AWARE VIRTUAL NETWORK
EMBEDDING PROBLEM

A. Virtual Network Embedding Problems

Network virtualization is a powerful tool that enables multi-
ple users to share the same physical resources simultaneously
and to exploit abstracted topologies and functions. Due to
the requirement of isolation and the limitation of physical
resources, it is a natural question that how we would be
able to embed virtual resources in an effective, expedient
and serviceable way, that is, the virtual network embedding
problems.

Typically, virtual network embedding could be abstracted as
a resource allocation problem, to find the optimal mappings
between a sequence of virtual network requests and a given
substrate network. A single virtual network request is defined
by its life span and virtual network topology. The life span
indicates its demanding start and end time of occupying
physical resources. The topology, including virtual nodes and
links, is annotated with constraints, representing their demands
for host physical resources. Note that a virtual node is typically
in the form of an isolated Virtual Machine (VM), hosted by
an end system that is usually abstracted as a substrate node.
A virtual link is usually mapped to a substrate path.

Virtual network embedding problems are complicated. On
the one hand, embedding operations shall be constrained
according to the physical capabilities and the demands of

virtual network requests, which makes it NP-hard and com-
putationally intractable. QoS constraints are one of the typical
forms. On the other hand, its computation efficiency is a
practical requirement for network operators due to its real-
time nature. Hence, designing heuristics is quite challenging
but important.

B. Security Issues in Virtual Networks

Network virtualization could be a two-edged sword. As
an additional virtualization layer and multiple shared VMs
are introduced into the architecture of end systems, more
complexity is incurred by network virtualization. Network
operators are able to get more flexibility of the network in
trade of potential attack vectors [8]. Apart from traditional
vulnerabilities, virtual networks suffer from additional security
hazards in the following aspects.

First, VMs would be easily attacked if their physical host
was occupied by adversaries. The VMs being attacked would
not be able to defend themselves, because VMs are always su-
pervised by their hosts in all aspects. Second, an unauthorized
VM may attack its host or another VM on the same host.
The attacking VM may escape from the rigid confinement
created by the virtualization process [8]. Third, the attackers
can perform side-channel attacks [10] or negatively influence
the whole system, such as launching Denial-of-Service attacks.

Not only nodes but also links do suffer from additional
security threats. Adversaries may influence the physical links
in a negative way (e.g. replay attacks). Also, it is possible that
substrate routers and switches are attacked. Due to the migra-
tion and splitting nature of virtual links [5], the above two
issues cannot be ignored, as a virtual link with high security
demands may be embedded onto substrate resources without
adequate protection. As a consequence, it is a necessity to
consider security requirements of virtual networks during the
process of embedding.

C. The Abstraction of Security Constraints

In order to abstract the security requirements of virtual
networks, we introduce the numerical concept of security
level. The security levels indicate the abstracted standard of
protection, being assigned by network operators. The higher
levels they are able to offer, the more protection mechanisms
are available. For example, a substrate node that enables data
encryption and digital signature would be assigned a higher
security level than those do not.

Security demands then could be expressed in terms of se-
curity levels. Apparently, a certain demand would be satisfied
by resources that have been assigned equal or higher security
levels, because they are capable of a larger set of protection
mechanisms.

Based on the assumptions above, we conclude four ab-
stracted security constraints as below, and the constraints
proposed in [8] have been included. Note that the security
level of a substrate path will be determined by the minimum
level of all links and nodes included.

ba
5(D2)

A B

DC

H

FE

G

a

b

10(L1) 5(L2)

15(L4)

10(L4)

5(L3)

5(L2)

10(L1)

5(L1)

10(L2)

5(L4)

5(L3)
Virtual Network Request

with

Security Constraints

Substrate Network

(D3 L4) (D2 L2)

(L2 D1)

(L3 D3)

(L3 D2)

(L1 D1)

(L4 D3)(L4 D2)

(L2 D2)

(L2 D1)

Fig. 1. An example of virtual network embedding problems with security
constraints.

1) A substrate node should guarantee a security level that
is higher than the demand of every guest node.

2) A virtual node should guarantee a security level that is
higher than the demand of its host node.

3) Each virtual node should provide all other virtual nodes
of the same host with an adequate security level.

4) A virtual link with a certain security demand should
be hosted by a substrate path with an adequate security
level.

Figure 1 depicts a simple example of the security-aware
virtual network embedding problem. We assume an adequate
CPU capability of every physical node, and we omit them in
the figure to emphasize the security constraints. In the figure,
(D3, L4) at side of a node indicates that the corresponding
resource ensure a security level of 4, and require its host
or guest to offer a security level not lower than 3. 5(D2)
indicates that the annotated link require 5 unit bandwidth and
demand for a host path that offers a security level of 2.

Without the security constraints, the example virtual net-
work request could be embedded onto any pair of physical
nodes and any path between them in the figure. However, when
considering security, the mapping result is shown by the red
dotted line. Virtual nodes a, b and link ab are mapped onto
A, H and the path ADGH , respectively. C cannot be a host
of a because of insufficient security level. ABFH would be a
host of ab only if HF offered a security level of 2 or higher.

IV. FORMULATION OF THE SECURITY-AWARE VIRTUAL
NETWORK EMBEDDING PROBLEM

A. Mathematical Definitions

1) Substrate Networks: A substrate network
can be abstracted as a weighted undirected graph
GS = (NS , LS , ASN , A

S
L), where NS is the set of all

substrate nodes and LS is the set of all substrate links. The
annotation ASN and ASL denote the attributes of substrate
nodes and links, respectively. When discussing the security
problem, it is reasonable to simplify the distinct attributes to
the following settings:

ASN = {{cpuS(n), demS(n), levS(n)}|n ∈ NS}
ASL = {{bwS(l), levS(l)}|l ∈ LS}

For a given n ∈ NS , cpuS(n), demS(n) and levS(n) denote
the CPU capacity, security demand and security level of n,

respectively. Similarly, bwS(l) and levS(l) are the available
bandwidth and the security level of each substrate link l (∀l ∈
LS). Additionally, We use notation PS to represent the set of
all paths in GS .

2) Virtual Network Requests: Virtual network requests are
organized in order of arriving time:

GV = {GV1 , GV2 , . . . , GVk }

The No.i request can be described as another weighted undi-
rected graph GVi = (NV

i , L
V
i , T ime

V
i , Dur

V
i , C

V
i,N , C

V
i,L). It

arrives at time TimeVi and lasts a time period of DurVi .
Similar to the description of substrate resource attributes, the
virtual network requirements are represented as follows:

CVi,N = {{cpuVi (n), demV
i (n), lev

V
i (n)}|n ∈ NV

i }
CVi,L = {{bwVi (l), demV

i (l)}|l ∈ LVi }

For a given n ∈ NV
i , cpuV (n), demV (n) and levV (n) denote

the demanded CPU, required security demand and security
level, respectively. bwV (l) and demV (l) are the bandwidth
demand and the security demand of each virtual link l (∀l ∈
LVi).

3) The Embedding Operations: Based on the descriptions
above, we can define the embedding operations as a sequence
of mappings:

M = {M1,M2, . . . ,Mi, . . .}

∀i ∈ {1, 2, 3, . . .}, Mi is the mapping of request GVi .

Mi : G
V
i → GSi = (Ni, Pi, Ai,N , Ai,L),

where Ni ⊆ NS , Pi ⊆ PS . Ai,N and Ai,L represent the
attributes of substrate nodes and links in GSi , the redundant
network of GS at TimeVi , just before trying to embed GVi .

Additionally, we use Mi,N : NV
i → (NS , Ai,N) and Mi,L :

LVi → (PS , Ai,L) to describe the two stages of Mi, that is,
node mapping and link mapping, respectively.

4) Other Functions: In order to describe our model explic-
itly, a two-value function ρ(i) is defined to indicate whether
a single request is successfully embedded or not.

∀i∈{1, 2, . . . , |M |},ρ(i)=

{
1,if request No.i accepted
0,if request No.i denied

(1)

Additionally, we propose two sets of variants Xi =
{xi,qr|nq ∈ NV

i , nr ∈ NS} and Yi = {yi,qr|lq ∈ LVi , pr ∈
PS} to express the formulation in a simple way. For a given
virtual network request GVi , we define xi,qr ∈ {0, 1} as an
element of Xi to indicate the node relationships. If a virtual
node nq is mapped onto the substrate node nr, then xi,qr = 1.
Otherwise, xi,qr = 0. Moreover, yi,qr ∈ Yi is defined in a
similar way, indicating the ratio of bandwidth allocation, so
we have yi,qr ∈ [0, 1]. For example, yi,qr = 0.5 means that
half bandwidth of virtual link request lq is mapped onto each
substrate link of path pr.

B. The Objective Functions

Operators of virtual networks always try to maximize the
long-term profit of virtual network embedding operations,
which involves both revenue and cost.

1) The Revenue Functions: The revenue of a mapping
Mi ∈M can be described as below:

Rev(Mi) = ρ(i)·DurVi ·[
∑

nV
i
∈NV

i

demV (nVi)cpu
V (nVi)

+
∑

lV
i
∈LV

i

demV (lVi)bw
V (lVi)]

(2)

Intuitively, a request with higher security demands achieves
a higher revenue. Therefore, we take both node and link
security demands into account, as is shown in the equation.

2) The Cost Functions: The cost of a mapping Mi ∈ M
can be described as follows:

Cost(Mi) =ρ(i)·DurVi ·[
∑

nV
i
∈NV

i

levS(Mi,N (nVi))cpu
V (nVi)

+
∑

lV
i
∈LV

i

levS(Mi,L(l
V
i))len(Mi,L(l

V
i))bw

V (lVi)]
(3)

The function len(p) in the equation indicates the number of
hops through the path p ∈ PS . Obviously, it would be a waste
and would cost more to occupy substrate resources with an
unnecessarily long path and an exorbitant security level.

3) The Objectives: Based on the assumptions above, we
can conclude three different objectives of the security-aware
virtual network embedding problem as below:

1) to maximize the request acceptance ratio, that is, the
ratio of virtual network requests being successfully
embedded;

2) to maximize the long-term revenue of the network;
3) to maximize the long-term Revenue to Cost Ratio (R/C

Ratio) of the network.

Generally, to evaluate the embedding results, all of the three
objectives are considered with different priorities, which vary
among different practical situations.

C. The Model of the Security-aware Virtual Network Embed-
ding Problem

Described as an optimization problem, the security-aware
virtual network embedding problem is formulated with specific
objectives and constraints. The objective is:

max lim
T→∞

∑|M|
i=1 Rev(Mi)

T
(4)

and the constraints are:

|NS |∑
r=1

xi,qr = 1 ∀ni,q ∈ NV
i (5)

|PS |∑
r=1

yi,qr = 1 ∀li,q ∈ LVi (6)

|N |∑
i=1

xi,qrcpu
V
i (ni,q) ≤ cpuS(nr) ∀ni,q∈NV

i , nr∈NS (7)

|N |∑
i=1

yi,qrbw
V
i (li,q) ≤ min

lj∈pr
bwS(lj) ∀li,q∈LVi , pr∈PS (8)

xqrdem
S(nr) ≤ levV (nq) ∀nq∈NV

i , nr∈NS (9)
xqrdem

V (nq) ≤ levS(nr) ∀nq∈NV
i , nr∈NS(10)

max{demS(nr),max
xqr=1

demV(nq)}

≤min{levS(nr), min
xqr=1

levV(nq)}
∀nq∈NV

i , nr∈NS(11)

demV (lq) ≤ min
li∈pr,yqr>0

levS(li) ∀lq∈LVi , pr∈PS (12)

The equation (4) is the formulation of the revenue objective
addressed in Sec. IV-B3. The constraint (5) restricts each
virtual node to be mapped onto a single substrate node, while
(6) ensures that the bandwidth demand of each virtual link is
shared by several substrate paths. The constraint (7) ensures
that the host of virtual nodes can satisfy the guests’ CPU
requirements. The constraint (8) ensures that the bandwidth
of each substrate link is not over-subscribed. The constraints
(9) to (12) are highlighted: they are four security constraints
corresponding to the constraint list in Sec. III-C.

V. SECURITY-AWARE VIRTUAL NETWORK EMBEDDING
ALGORITHM

In this section, we propose a two-stage security-aware vir-
tual network embedding algorithm, based on the formulation
presented in Sec. IV-C. The two stages of the algorithm
correspond to the problem decomposition of node mapping
stage and link mapping stage, respectively. The separation of
two stages simplifies the problem, but special mechanisms are
required to avoid bad results.

The embedding problem is capable of being decomposed
into a sequence of sub-problems, which is to embed one single
virtual network onto the redundant substrate. In the following
description, we focus on a single sub-problem to describe two
stages in detail, then the framework of solving the overall
problem is given.

A. The Heuristics

The principle of our algorithm is to design a heuristic for
each substrate node to estimate its availability of hosting a
given virtual node, and to guide the node mapping operations.
Based on this estimated value, we are able to sort the substrate
nodes in a reasonable order and then to perform a best-first
search. Apparently, a more precise estimation will result in
a better result, that is, achieving more optimized objectives.
Also, the complexity of calculating this value cannot be too
high because of frequent refreshment.

Intuitively, a substrate node with more CPU capability and
broader outgoing bandwidth would be more available to host
virtual nodes. Offering a higher security level would also

contribute, but, to avoid high cost based on equation (3), it
would be the best to exactly match the security demands. As
a result, the estimated value varies with different levels of
security demands, and we need to compute each for different
requests.

For a given security demand k, We design two variants to
properly introduce the factors mentioned above. In particular,
let n be the substrate node we are focusing on, and Link(n)
denotes the set of outgoing links of n, so Link(n) ⊆ LS .
∀l ∈ Link(n), we define the uniformed bandwidth bw uk:

bw u(l, k) =

{
bw(l)elev(l)−k if lev(l) ≥ k

0 if lev(l) < k

Similarly, the uniformed CPU of a substrate node n is defined:

cpu u(n, k) =

{
cpu(n) 1−(lev(n)−k)

2

δ if lev(n) ≥ k
0 if lev(n) < k

δ is the coefficient to ensure its positive value.
As is done in [5], we model the intuitive estimated value of

a given substrate node n at certain security demand k by using
the product of its uniformed CPU and collective bandwidth of
outgoing links, that is,

H(0)(n, k) = cpu u(n, k)
∑

l∈Link(n)

bw u(l, k) (13)

The result of H(0) is called basic estimation, depending on a
single node’s related resources.

Furthermore, to make the estimation more accurate, addi-
tional information should be included. We take both virtual and
substrate global topologies into consideration. Neighboring
nodes interconnection factors in both virtual and physical
networks are introduced after analyzing the following exam-
ples. First, assuming that a virtual node a has already been
embedded onto substrate node A. For virtual node b, which
connect to a directly in the same virtual network request,
the availability of the neighbors of A would undoubtedly
get a promotion. The second case is that a substrate node
B with little basic estimated value would seem to be more
available, only if B had a neighboring C with a high rank of
estimation. Moreover, with broader interconnection bandwidth
and a higher link security level, B would be more influenced
by its neighbor, because the additional cost of link BC would
be less.

Thus, an iterative mechanism is introduced. We propose a
variant named propagate coefficient of each substrate link, to
measure the neighboring nodes’ influence on each other. For
the nodes at both end of link l, PC(l, k) is defined to evaluate
propagate coefficient at the given security level k.

PC(l, k) =
bw u(l, k)

Max Prob BW

The constant Max_Prob_BW denotes the maximum probable
bandwidth of all links. The iterative computation process of

the heuristic is defined as below:

H(t+1)(n, k) = λ
∑

(m,n)∈Link(n)

PC((m,n), k)H(t)(m, k)

+ (1− λ)H(t)(n, k)

(14)

where t = 0, 1, 2, . . . ,MaxIte− 1. λ is a bias factor, and we
typically set it to 0.15. Additionally, we take the uniformed
link bandwidth into account, instead of just focusing on neigh-
boring node resources in [11]. MaxIte defines the number of
iteration rounds, and we set it to b

√
|NS |c, the square root of

the number of substrate nodes, so that topology information
would be able to spread out the network.

B. Node Mapping Algorithm

The node mapping algorithm is described in Algorithm 1.
It is called to try to properly embed all virtual nodes of a
single virtual network request GVi to the redundant substrate
GSi , while ensuring high revenue and low cost during the
second stage of link mapping. That is, for a given request GVi ,
Algorithm 1 aims at getting a proper mapping Mi,N based
on the heuristic H(MaxIte). H(MaxIte) is calculated by using
equation (13) and (14) in terms of current security demand k.

Algorithm 1 Node Mapping Algorithm
1: For each possible security demand k, sort all substrate

nodes in a candidate node queue queue(k) in descending
order of H(MaxIte).

2: For all nodes m ∈ GSi , initial their state by setting
Occupied(m) = FALSE.

3: repeat
4: Get an unmapped node n randomly from GVi .
5: k = demV (n).
6: if exist the first node m in queue(k) satisfying

Occupied(m) = FALSE and demS(m) ≤ levV (n)
and cpuS(m) ≥ cpuV (n) then

7: Occupied(m) = TRUE.
8: Map the virtual node n onto the substrate node m.
9: else

10: Release all resources occupied by GVi .
11: return MAP_FAILED.
12: until all nodes in GVi are mapped successfully.
13: return NODE_MAP_SUCCESS.

C. Link Mapping Algorithm

If node mapping stage ends up with a success, we turn to
map the virtual links, using Algorithm 2. As virtual nodes
have become fixed in the substrate, what we need to do is
to find out the available substrate paths among there hosts.
There is no doubt that our goal is to get the substrate path
between virtual nodes with the lowest cost instead of smallest
number of paths hops. To this end, a variant named Path
Cost Coefficient (PCC) is designed in the place of paths hops.
Considering link security demand k, the Path Cost Coefficient
of a substrate path p ∈ PS is defined by following equation:

PCC(p, k) =
∑

l∈LS ,l∈p

[levS(l)− k + 1]

The prerequisite of link mapping algorithm is that the
state of current request is already NODE_MAP_SUCCESS. The
constant MAX_SPLIT_TIME, which indicates the upper limit
of link split times, is defined to avoid the fragmentation of
splittable link mapping and to limit the algorithm complexity.
The variant flag is an indicator of overall link mapping state.

Algorithm 2 Link Mapping Algorithm
1: for each unmapped virtual link l ∈ GVi do
2: bwr = bwV (l), k = levV (l), f lag = 0.
3: if l is splittable then
4: split = 1.
5: else
6: split = MAX_SPLIT_TIME.
7: Let m1,m2 ∈ GS be the hosts of both ends of l.
8: repeat
9: if exist p ∈ PS and p : m1 → m2, with the minimum

PCC(p, k) then
10: bwS(p) = mint∈p bw

S(t), t ∈ LS .
11: Map the remaining resources of l onto p.
12: bwr = bwr − bwS(p).
13: if bwr ≥ then
14: flag = 1.
15: else
16: split = MAX_SPLIT_TIME+ 1.
17: until flag = 1 or split > MAX_SPLIT_TIME
18: if flag = 0 then
19: return MAP_FAILED.
20: return MAP_SUCCESS.

D. The Algorithm Framework

1) Framework Description: To be applied in real-time sce-
nario, dealing with both new-coming and suspended requests,
our algorithm framework is designed to be called once in every
fixed time interval.

First, the algorithm scans all of the online virtual network
requests. Second, these requests are sorted in descending
order of their revenues. This process is the preparing work
of greedily deciding embedding priorities. Third, the sub-
algorithms of both node and link mapping are called in turn,
to try embedding the awaiting virtual network request with the
maximum revenue and then to refresh the redundant networks.
Finally, after trying all requests, the procedure is terminated.

2) Time Complexity Analysis: As a sub-process to embed
a single virtual network request onto the redundant substrate
network, both node and link mapping algorithm need to be
called once. Based on the descriptions above, we conclude
that node mapping is a polynomial-time algorithm. The sub-
process of calculating estimated value and sorting has the time
complexity of O(|NS |

3
2), while node mapping is O(|NS | ·

|NV |). Also, link mapping can be solved in O(|NS |3 · |LV |).
Finally, considering the procedures of detecting request states
and allocating, releasing resources have linear complexity, our
framework is a polynomial-time algorithm in terms of |NS |,
|NV |, |LV | and the number of virtual requests.

VI. PERFORMANCE EVALUATION

In this section, the performance of our security-aware virtual
network embedding algorithm is evaluated. We first describe
the different simulation settings, and then present our result of
evaluation.

A. Evaluation Environments

1) Network Settings: We generate all virtual network re-
quests and substrate network topologies by using the GT-ITM
tool [12], adopting similar parameters with [5].

The substrate is set to have 100 nodes and around 500 links,
a scale that corresponds to a medium sized ISP. The CPU
and bandwidth capability of the substrate nodes and links are
real numbers uniformly distributed between 50 and 100. The
security level of both nodes and links are integer numbers
uniformly distributed between 0 and 4. The security demands
of substrate nodes are also integers varying from 0 to 4. They
are not distributed uniformly, because the security demand of
a single node cannot be higher than its security level.

The number of nodes in each request topology is uniformly
distributed between 2 and 20. The average link connectivity
rate is 50%, which is determined by the α parameter of GT-
ITM. The CPU and bandwidth requirements of virtual nodes
and links are real numbers uniformly distributed between 0
and 50. The virtual network requests are reconfigured by an
extension to the GT-ITM tool, which arranges the topologies
into a sequence and gives each of them a request time and
duration. We assume that requests arrive following a Poisson
process with an average arrival rate of 5 requests per 100
time units. The duration of each follows an exponentially
distribution with an average of 500 time units. Our simulation
involves 1500 requests per instance, so that the total time of
simulation would be about 30000 time units.

2) Comparison and Objectives: Three algorithms listed
below are included in our evaluation to test the performances.
We will compare the evaluation results of all three objectives
listed in Sec. IV-B3, based on the same hardware and software
platform.

SAV: Our Security-Aware Virtual network embedding
algorithm, with detailed description in Sec. V. The two-stage
algorithm is based on the heuristic of H(MaxIte), which is
calculated by using Equation 13 and 14.

NI-SAV: The Non-Iterative SAV, that is, using H(0) instead
of H(MaxIte) as heuristic. Without considering factors of
neighboring nodes, it is used to test the effectiveness of
iterative computation of estimated values.

BL: The Baseline algorithm. It is an extension to Yu’s
project in [5]. We have simply revised it by adding constraints
and updating the computation of embedding revenue and cost,
using Equation 2 and 3.

B. Evaluation Results and Discussion

1) Objectives Comparison: We generated 11 different test
sets of virtual network requests (with link splittable ratio at
60%) and substrate networks to evaluate the performance of

2 4 6 8 10
3500

4000

4500

5000

5500

6000

6500

7000

c) long−term average revenue

datasets

A
v
e

ra
g
e

 R
e

v
e

n
u

e

2 4 6 8 10
0.6

0.65

0.7

0.75

0.8

0.85

0.9

b) VNR acceptance ratio

datasets

A
c
c
e

p
ta

n
c
e

 R
a

ti
o

 (
%

)

2 4 6 8 10
0.35

0.36

0.37

0.38

0.39

0.4

0.41

0.42

0.43

a) long−term R/C ratio

datasets

R
e

v
e

n
u

e
/C

o
s
t
R

a
ti
o

 (
%

)

NI−SAV

SAV

BL

NI−SAV

SAV

BL

NI−SAV

SAV

BL

Fig. 2. Simulation results of 11 data sets. Splittable Rate = 0.6.

0 0.5 1
1000

2000

3000

4000

5000

6000

7000

c) long−term average revenue

Spittable Ratio (%)

A
v
e

ra
g

e
 R

e
v
e

n
u

e

NI−SAV

SAV

0 0.5 1
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
b) VNR acceptance ratio

Spittable Ratio (%)

A
c
c
e

p
ta

n
c
e

 R
a

ti
o

 (
%

)

NI−SAV

SAV

0 0.5 1

0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

a) long−term R/C ratio

Spittable Ratio (%)

R
e

v
e

n
u

e
/C

o
s
t

R
a

ti
o

 (
%

)

NI−SAV

SAV

Fig. 3. Algorithm performance under different splittable rate.

different algorithms. Figure 2 depicts that both of our algo-
rithms (SAV and NI-SAV) achieve higher R/C Ratio (Figure 2
(a)), higher request acceptance ratio (Figure 2 (b)) and higher
long-term average revenue (Figure 2 (c)), compared with BL.

Besides, the iterative computation process of estimated
values has much elevated the accuracy of estimation. SAV
always achieves the best performances among the three.

2) Performance with Varied Splittable Ratio: In order to
evaluate the influence of splittable link ratio on the algo-
rithm process, we generated another 11 sets of requests, with
splittable ratios ranging from 0% to 100%. The simulation
results are shown in Figure 3. The figure indicates the poor
performance of our algorithms when few virtual link allows
splitting. When no link is splittable, SAV performs much better
because of the accuracy of estimation. When splittable rate
is above 30%, both SAV and NI-SAV are able to achieve
acceptable performance.

Note that there is a drop in both request acceptance ratio
and long-term average revenue when the splittable rate is very
high (> 80%). We think the cause of this phenomenon is
that the setting of the constant MAX_SPLIT_TIME is too
small. If our virtual network requests have high splittable rate,
we need to increase the value properly, hence to achieve a
higher acceptance ratio and more revenue. However, More
virtual links being split means more high-cost substrate paths
being utilized, therefore the R/C Ratio keeps decreasing, as is
depicted in Figure 3 (a).

3) Execution Time Comparison: Figure 4 indicates that our
algorithms need much less execution time, which ensures real-
time performance in large-scale scenarios. The iterative com-
putation of estimated value greatly enhances the performance

NI−SAV SAV BL
0

100

200

300

400

500

234.6364 248.9091

442.6515

A
v
e
ra

g
e
 E

x
e
c
u
ti
o
n
 T

im
e
(s

)

Fig. 4. Algorithm execution time comparison.

at the cost of reasonable time complexity.

VII. CONCLUSION

In this paper, we address the security requirements of
virtual network embedding. The numerical concept of security
levels and security demands are proposed to properly abstract
the security requirements. We formulate the problem as an
optimization problem, proposing three objectives with both
resource and security constraints. In our design of the heuristic
algorithm, the innovation of incurring global topologies and
interconnection information is highlighted. The evaluation
results demonstrate its effectiveness and practicality.

ACKNOWLEDGMENT

This work is supported by the National Natural Science
Foundation of China under Grant No. 61070198, 61379145,
61170288, 61379144, 61272510.

REFERENCES

[1] A. Fischer, J. F. Botero, M. T. Beck, H. de Meer, and X. Hesselbach,
“Virtual network embedding: A survey,” IEEE Communications Surveys
& Tutorials, pp. 1–19, 2013.

[2] J. Carapinha and J. Jiménez, “Network virtualization: a view from
the bottom,” in Proceedings of the 1st ACM workshop on Virtualized
infrastructure systems and architectures. ACM, 2009, pp. 73–80.

[3] A. Haider, R. Potter, and A. Nakao, “Challenges in resource allocation
in network virtualization,” in 20th ITC Specialist Seminar, vol. 18, 2009.

[4] D. G. Andersen, “Theoretical approaches to node assignment,” Computer
Science Department, p. 86, 2002.

[5] M. Yu, Y. Yi, J. Rexford, and M. Chiang, “Rethinking virtual network
embedding: substrate support for path splitting and migration,” ACM
SIGCOMM Computer Communication Review, vol. 38, no. 2, 2008.

[6] S. Su, Z. Zhang, X. Cheng, Y. Wang, Y. Luo, and J. Wang, “Energy-
aware virtual network embedding through consolidation,” in INFOCOM
2012 Computer Communications Workshops. IEEE, 2012, pp. 127–132.

[7] Z. Cai, F. Liu, N. Xiao, Q. Liu, and Z. Wang, “Virtual network embed-
ding for evolving networks,” in Global Telecommunications Conference
(GLOBECOM 2010). IEEE, 2010, pp. 1–5.

[8] A. Fischer and H. de Meer, “Position paper: Secure virtual network
embedding,” Praxis der Informationsverarbeitung und Kommunikation,
vol. 34, no. 4, 2011.

[9] L. Bays, R. Oliveira, L. Buriol, M. Barcellos, and L. Gaspary, “Security-
aware optimal resource allocation for virtual network embedding,” in
Network and service management (cnsm), 2012, pp. 378–384.

[10] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, “Hey, you, get
off of my cloud: exploring information leakage in third-party compute
clouds,” in Proceedings of the 16th ACM conference on Computer and
communications security. ACM, 2009, pp. 199–212.

[11] X. Cheng, S. Su, Z. Zhang, H. Wang, F. Yang, Y. Luo, and J. Wang,
“Virtual network embedding through topology-aware node ranking,”
ACM SIGCOMM Computer Communication Review, vol. 41, no. 2,
2011.

[12] E. W. Zegura, K. L. Calvert, and S. Bhattacharjee, “How to model an
internetwork,” in INFOCOM’96, vol. 2. IEEE, 1996, pp. 594–602.

