Siphon: Expediting Inter-Datacenter Coflows in Wide-Area Data Analytics

Shuhao Liu, Li Chen and Baochun Li
Department of Electrical and Computer Engineering, University of Toronto

Abstract

It is increasingly common that large volumes of produc-
tion data originate from geographically distributed data-
centers. Processing such datasets with existing data par-
allel frameworks may suffer from significant slowdowns
due to the much lower availability of inter-datacenter
bandwidth. Thus, it is critical to optimize the delivery
of inter-datacenter traffic, especially coflows that imply
application-level semantics, to improve the performance
of such geo-distributed applications.

In this paper, we present Siphon, a building block inte-
grated in existing data parallel frameworks (e.g., Apache
Spark) to expedite their generated inter-datacenter
coflows at runtime. Specifically, Siphon serves as a
transport service that accelerates and schedules the inter-
datacenter traffic with the awareness of workload-level
dependencies and performance, while being completely
transparent to analytics applications. Novel intra-coflow
and inter-coflow scheduling and routing strategies have
been designed and implemented in Siphon, based on a
software-defined networking architecture.

On our cloud-based testbeds, we have extensively
evaluated Siphon’s performance in accelerating coflows
generated by a broad range of workloads. With a variety
of Spark jobs, Siphon can reduce the completion time of
a single coflow by up to 76%. With respect to the av-
erage coflow completion time, Siphon outperforms the
state-of-the-art scheme by 10%.

1 Introduction

Big data analytics applications are typically developed
with modern data parallel frameworks, such as Apache
Hadoop [1] and Spark [25], taking advantage of their
out-of-the-box features of scalability. With the trend of
further scaling out, it has been reported that these ap-
plications are deployed across the globe, with their raw
input data generated from different locations and stored

in geographically distributed datacenters [19,24]. When
processing such geo-distributed data, computation tasks
in different datacenters would transfer their intermedi-
ate results across the inter-datacenter network, which has
much lower bandwidth, typically by an order of magni-
tude [12], than that within a datacenter. As such, appli-
cations that involve heavy inter-datacenter traffic easily
suffer from significantly degraded performance, known
as the wide-area data analytics [23].

To alleviate such performance degradation, existing
work in the literature has largely focused on rearrang-
ing the pattern of inter-datacenter traffic, with the hope
of relieving network bottlenecks. Specifically, one cate-
gory of such efforts [19, 23, 24] attempted to design op-
timal mechanisms of assigning input data and compu-
tation tasks across datacenters, to reduce or balance the
network loads. Another category of the existing work
[12,22] tried to adjust the application workloads towards
reducing demands on inter-datacenter communications.

However, given particular traffic from an application,
improving its performance by directly accelerating the
completion of its inter-datacenter data transfers has been
largely neglected. To fill this gap, we propose a delib-
erate design of a fast delivery service for data transfers
across datacenters, with the goal of improving applica-
tion performance from an orthogonal and complemen-
tary perspective to the existing efforts. Moreover, it has
been observed that an application cannot proceed until
all its flows complete [7], which indicates that its per-
formance is determined by the collective behavior of all
these flows, rather than any individual ones. We incorpo-
rate the awareness of such an important application se-
mantic, abstracted as coflows [8], into our design, to bet-
ter satisfy application requirements and further improve
application-level performance.

Existing efforts have investigated the scheduling of
coflows within a single datacenter [6,8,17,27], where the
network is assumed to be congestion free and abstracted
as a giant switch. Unfortunately, such an assumption no

longer holds in the wide area inter-datacenter network,
yet the requirement for optimal coflow scheduling to im-
prove application performance becomes even more criti-
cal.

In this paper, we present three inter-datacenter coflow
scheduling strategies that can significantly improve
application-level performance. First, we have designed
a novel and practical inter-coflow scheduling algorithm
to minimize the average coflow completion time, despite
the unpredictable available bandwidth in wide-area net-
works. The algorithm is based on Monte Carlo simu-
lations to handle the uncertainty, with several optimiza-
tions to ensure its timely completion and enforcement.
Second, we have proposed a simple yet effective intra-
coflow scheduling policy. It tries to prioritize a subset
of flows such that the potential straggler tasks can be ac-
celerated. Finally, we have designed a greedy multi-path
routing algorithm, which detours a subset of the traffic
on a bottlenecked link to an alternate idle path, such that
the slowest flow in a shuffle can be finished earlier.

Further, to enforce these scheduling strategies, we
have designed and implemented Siphon, a new build-
ing block for data parallel frameworks that is designed
to provide a transparent and unified platform to expedite
inter-datacenter coflows.

From the perspective of data parallel frameworks,
Siphon decouples inter-datacenter transfers from intra-
datacenter traffic, serving as a transport with full coflow
awareness. It can be easily integrated to existing frame-
works with minimal changes in source code, while being
completely transparent to the analytics applications atop.
We have integrated Siphon to Apache Spark [25].

With Siphon, the aforementioned coflow scheduling
strategies become feasible thanks to its software-defined
networking architecture. For the datapath, it employs ag-
gregator daemons on all (or a subset of) workers, form-
ing a virtual overlay network atop the inter-datacenter
WAN, aggregating and forwarding inter-datacenter traf-
fic efficiently. At the same time, a controller can
make centralized routing and scheduling decisions on
the aggregated traffic and enforce them on aggregators.
Also, the controller can work closely with the resource
scheduler of the data parallel framework, to maintain a
global and up-to-date knowledge about ongoing inter-
datacenter coflows at runtime.

We have evaluated our proposed coflow scheduling
strategies with Siphon. Across five geographical regions
on Google Cloud, we have evaluated the performance of
Siphon from a variety of aspects, and the effectiveness of
intra-coflow scheduling in accelerating several real Spark
jobs. Our experimental results have shown an up to 76%
reduction in the shuffle read time. Further experiments
with the Facebook coflow benchmark [8] have shown an
~ 10% reduction on the average coflow completion time

as compared to the state-of-the-art schemes.

We make three original contributions in this paper:

e We have proposed a novel and practical inter-coflow
scheduling algorithm for wide-area data analytics. Start-
ing from analyzing the network model, new challenges
in inter-datacenter coflow scheduling have been identi-
fied and addressed.

e We have designed an intra-coflow scheduling policy
and a multi-path routing algorithm that improve WAN
utilization in wide-area data analytics.

e We have built Siphon, a transparent and unified
building block that can easily extend existing data paral-
lel frameworks with out-of-box capability of expediting
inter-datacenter coflows.

2 Motivation and Background

In modern big data analytics, the network stack tradi-
tionally serves to deliver individual flows in a timely
fashion [3, 4, 26], while being oblivious to the applica-
tion workload. Recent work argues that, by leveraging
workload-level knowledge of flow interdependence, the
proper scheduling of coflows can improve the perfor-
mance of applications in datacenter networks [8].

As an application is deployed at an inter-datacenter
scale, the network is more likely to be a system bot-
tleneck [19]. Existing efforts in wide-area data analyt-
ics [12, 19, 22] all seek to avoid this bottleneck, rather
than mitigating it. Therefore, it is necessary to enforce
a systematic way of scheduling inter-datacenter coflows
for better link utilization, given the fact that the timely
completion of coflows can play an even more significant
role in application performance.

However, new challenges arise in inter-datacenter net-
works, which have quite different characteristics as com-
pared to datacenter networks [11, 14]. Such unique char-
acteristics can invalidate the assumptions made by exist-
ing coflow scheduling algorithms.

First, inter-datacenter networks have a different net-
work model. Networks are usually modeled as a big
switch [8] or a fat tree [20] in the recent coflow schedul-
ing literature, where the ingress and egress ports at the
workers are identified as the bottleneck. This is no longer
true in wide area data analytics, as the available band-
width on inter-datacenter links are magnitudes lower
than the edge capacity (see Table 1).

Second, the available inter-datacenter bandwidth fluc-
tuates over time. Unlike in datacenter networks, the com-
pletion time of a given flow can hardly be predictable,
which makes the effectiveness of existing deterministic
scheduling strategies (e.g., [8,27]) questionable. The
reason is easily understandable: though the aggregated
link bandwidth between a pair of datacenters might be
abundant, it is shared among tons of users and their

Oregon Carolina | Tokyo Belgium Taiwan
Oregon 3000 236 250 152.0 194
Carolina 237 3000 83.8 251 45.1
Tokyo 83.8 81.7 3000 89.2 586
Belgium 249 242 86.6 3000 76.0
Taiwan 182 35.8 508 68.0 3000

Table 1: Peak TCP throughput (Mbps) achieved across different re-
gions on the Google Cloud Platform, measured with iperf3 in TCP
mode on standard 2-core instances. Rows and columns represent
source and destination datacenters, respectively. These statistics match
the reports in [12].

(@)
_____________________ e
Qk2() | HH H—
0 1 2 3 4 5 6 7 8 Time

Figure 1: An example with two coflows, A and B, being sent through
two inter-datacenter links. Based on link bandwidth measurements and
flow sizes, the duration distributions of four flows are depicted with
box plots. Note that the expected duration of A1 and B2 are the same.

launched applications, with varied, unsynchronized and
unpredictable networking patterns.

Third, our ability to properly schedule and route inter-
datacenter flows is limited. We may gain full control via
software-defined networking within a datacenter [28],
but such a technology is not readily available in inter-
datacenter WANs. Flows through inter-datacenter links
are typically delivered with best effort on direct paths,
without the intervention of application developers.

To summarize, it calls for a redesigned coflow
scheduling and routing strategy for wide-area data an-
alytics, as well as a new platform to realize in existing
data analytics frameworks. In this paper, Siphon is thus
designed from the ground up for this purpose. It is an
application-layer, pluggable building block that is readily
deployable. It can support a better WAN transport mech-
anism and transparently enforce a flexible set of coflow
scheduling disciplines, by closely interacting with the
data parallel frameworks. A Spark job with tasks across
multiple datacenters, for example, can take advantage of
Siphon to improve its performance by reducing its inter-
datacenter coflow completion times.

3 Scheduling Inter-Datacenter Coflows

3.1 Inter-Coflow Scheduling

Inter-coflow scheduling is the primary focus of the lit-
erature [6, 8,21,27]. In this section, we first analyze
the practical network model of wide-area data analytics.
Based on the new observations, we propose the details of
a Monte Carlo simulation-based scheduling algorithm.

3.1.1 Goals and Non-Goals

Our major objective is to minimize the average coflow
completion time, in alignment with the existing literature.

However, we focus on inter-datacenter coflows, which
are constrained by a different network model. In partic-
ular, based on the measurement in Table 1, we conclude
that inter-datacenter links are the only bottlenecked re-
sources, and congestion can hardly happen at the ingress
or egress port. For convenience, we call it a dumb bell
network structure. In addition, we consider the availabil-
ity of inter-datacenter bandwidth as a dynamic resource.
Scheduling across coflows should take runtime variations
into account, making a scheduling decision that has a
higher probability of completing coflows faster.

Similar to [8,28], we assume the complete knowledge
of ongoing coflows, i.e., the source, the destination and
the size of each flow are known as soon as the coflow ar-
rives. Despite recent work [6,27] which deals with zero
or partial prior knowledge, we argue that this assump-
tion is practical in modern data parallel frameworks. It
is conceivable that the task scheduler is fully aware the
potential cross-worker traffic before launching the tasks
in the next stage and triggering the communication stage
[1,7,25]. We will elaborate further on its feasibility in
Sec. 4.3.

3.1.2 Schedule with Bandwidth Uncertainty

Coflow scheduling in a big switch network model has
been proven to be NP-hard, as it can be reduced to an in-
stance of the concurrent open shop scheduling with cou-
pled resources problem [8]. With a dumb bell network
structure, as contention is removed from the edge, each
inter-datacenter link can be considered an independent
resource that is used to service the coflows (jobs). There-
fore, it makes sense to perform fully preemptive coflow
scheduling, as resource sharing always results in an in-
creased average [10].

The problem may seem simpler with this network
model. However, it is the sharing nature of inter-
datacenter links that complicates the scheduling. The
real challenge is, being shared among tons of unknown
users, the available bandwidth on a certain link is not
predictable. In fact, the available bandwidth a random
variable whose distribution can be inferred from history
measurements. Thus, the flow durations are also random
variables. The coflow scheduling problem in wide-area
data analytics can be reduced to the independent prob-
abilistic job shop scheduling problem [5], which is also
NP-hard.

We seek a heuristic algorithm to solve this online
scheduling problem. An intuitive approach is to make
an estimation of the flow completion times, e.g., based on
the expectation of recent measurements, such that we can
solve the problem by adopting a deterministic scheduling
policy such as Minimum-Remaining Time First (MRTF)
[8,27].

Unfortunately, this naive approach fails to model the

Cnec Cacs Cerc Ceca Ccas Ceea

Figure 2: The complete execution graph of Monte Carlo simulation,
given 3 ongoing coflows, A, B and C. The coflow scheduling order is
determined by the distributions at the end of all branches.
probabilistic distribution of flow durations. Fig. 1 shows
a simple example in which deterministic scheduling does
not work. In this example, the available bandwidth on
Link 1 and 2 have distinct distributions because users
sharing the link have distinct networking behaviors. With
Coflow A and B competing, the box plots depict the
skewed distributions of flow durations if the correspond-
ing coflow gets all the available bandwidth.

With a naive, deterministic approach that considers av-
erage only, scheduling either A or B will result in a mini-
mum average coflow completion time. However, it is an
easy observation that, with a higher probability, the dura-
tion of flow A1, will be shorter than B2. Thus, prioritiz-
ing Coflow A over B should yield an optimum schedule.

3.1.3 Monte Carlo Simulation-based Scheduling

To incorporate such uncertainty, we propose an online
Monte Carlo simulation-based inter-coflow scheduling
algorithm, which is greatly inspired by the offline algo-
rithm proposed in [5].

The basic idea of Monte Carlo simulation is simple
and intuitive: For every candidate scheduling order, we
repeatedly simulate its execution and calculate its cost,
i.e., the simulated average coflow completion time. With
enough rounds of simulations, the cost distribution will
approximate the actual distribution of average coflow
completion time. Based on this simulated cost distri-
bution, we can choose among all candidate scheduling
orders at a certain confidence level.

As an example, Fig. 2 illustrates an algorithm execu-
tion graph with 3 ongoing coflows. There are 6 poten-
tial scheduling orders, corresponding to the 6 branches
in the graph. To perform one round of simulation, the
scheduler generates a flow duration for each of the node
in the graph, by randomly drawing from their estimated
distributions. By summing up the cost for each branch,
it yields a best scheduling decision instance, which re-
sults in a counter increment. After plenty of rounds, the
best scheduling order will converge to the branch with
the maximum counter value.

One major concern of this algorithm is its high com-
plexity. With n ongoing coflows, there will be up to n!
branches in the graph of simulation. Luckily, thanks to
the nature of coflow scheduling, we can apply the fol-
lowing techniques to limit the simulation search space.

Bounded search depth. In online coflow scheduling,
all we care about is the coflow that should be sched-
uled next. This property makes a full simulation towards
all leaf nodes unnecessary. Therefore, we set an upper
bound, d, to the search depth, and simulate the rest of
branches using MRTF heuristic and the median flow du-
rations. This way, the search space is limited to a poly-
nomial time ®(n?).

Early termination. Some “bad” scheduling decisions
can be identified easily. For example, scheduling an ele-
phant coflow first will always result in a longer average.
Based on this observation, after several rounds of full
simulation, we cut down some branches where perfor-
mances are always significantly worse. This technique
limit the search breath, resulting in a O(n?) complexity.

Online incremental simulation. As an online simu-
lation, the scheduling algorithm should quickly react to
recent events, such as coflow arrivals and completions.
Whenever a new event comes, the previous job execu-
tion graph will be updated accordingly, by pruning or
creating branches. Luckily, the existing useful simula-
tion results (or partial results) can be preserved to avoid
repetitive computation.

These optimizations are inspired by similar techniques
adopted in Monte Carlo Tree Search (MCTS), but our
algorithm differs from MCTS conceptually. In every
simulation, MCTS tends to reach the leave of a single
branch in the decision tree, where the outcome can be re-
vealed. As a comparison, our algorithm has to go though
all branches at a certain depth, otherwise we cannot fig-
ure out the optimal scheduling for the particular instance
of available bandwidth.

3.1.4 Scalability

In wide-area data analytics, a centralized Monte Carlo
simulation-based scheduling algorithm may be ques-
tioned with respect to its scalability, as making and en-
forcing a scheduling decision may experience seconds of
delays.

We can exploit the parallelism and staleness tolerance
of our algorithm. The beauty of Monte Carlo simulation
is that, by nature, the algorithm is infinitely paralleliz-
able and completely agnostic to staled synchronization.
Thus, we can potentially scale out the implementation
to a great number of scheduler instances placed in all
worker datacenters, to minimize the running time of the
scheduling algorithm and the propagation delays in en-
forcing scheduling decisions.

3.2 Intra-Coflow Scheduling

To schedule flows belonging to the same coflow, we have
designed a preemptive scheduling policy to help flows
share the limited link bandwidth efficiently. Our schedul-

Flow Group 1 ends

: : | Flo?v Gr?up %l end§I
1 1 1

SOl 50 | 50 ! ! !
h Pl
T

I

[

|

|

|

Flow Group 2 ends

, , , Flow Gr?up 1, end§I
1 1 1 1
pc1-2 | 50| 50 RS m/

R1

BN

150 R2

0 1 2 3 4
Figure 3: Network flows across datacenters
in the shuffle phase of a simple job.

ing policy is called Largest Flow Group First (LFGF),
whose goal is to minimize job completion times. A
Flow Group is defined as a group of all the flows that
are destined to the same reduce task. The size of a flow
group is the total size of all the flows within, represent-
ing the total amount of data received in the shuffle phase
by the corresponding reduce task. As suggested by its
name, LFGF preemptively prioritizes the flow group of
the largest size.

The rationale of LFGF is to coordinate the scheduling
order of flow groups so that the task requiring more com-
putation can start earlier, by receiving their flows earlier.
Here we assume that the task execution time is propor-
tional to the total amount of data it received for process-
ing. It is an intuitive assumption given no prior knowl-
edge about the job.

As an example, we consider a simple Spark job that
consists of two reduce tasks launched in datacenter 2,
both requiring to fetch data from two mappers in data-
center 1 and one mapper in datacenter 3, as shown in
Fig. 3. Corresponding to the two reducers R/ and R2,
two flow groups are sharing both inter-datacenter links,
with the size of 200 MB and 150 MB, respectively. For
simplicity, we assume the two links have the same band-
width, and the calculation time per unit of data is the
same as the network transfer time.

With LFGF, Flow Group 1, corresponding to R/, has
a larger size and thus will be scheduled first. As is il-
lustrated in Fig. 4, the two flows (MI-RI, M2-RI) in
Flow Group 1 are scheduled first through the link be-
tween datacenter 1 and 2. The same applies to another
flow (M3-R1) of Flow Group 1 on the link between data-
center 3 and 2. When Flow Group 1 completes at time 3,
i.e., all its flows complete, R/ starts processing the 200
MB data received, and finishes within 4 time units. The
other reduce task R2 starts at time 5, processes the 150
MB data with 3 units of time, and completes at time 8§,
which becomes the job completion time.

If the scheduling order is reversed as shown in Fig. 5,
Flow Group 2 will complete first, and thus R2 finishes
at time 5. Although R/ starts at the same time as R2 in
Fig. 4, its execution time is longer due to its larger flow
group size, which results in a longer job completion time.
This example intuitively justifies the essence of LFGF —

Schedule 1 (LFGFS)
Figure 4: Job timeline with LFGF scheduling.

>

1
1
1
1
|
|
|
|
1
1
|
|
L
8 Time

6 7 8 Time 01 2 3 4 5 6 7
Schedule 2

Figure 5: Job timeline with naive scheduling.

for a task that takes longer to finish, it is better to start it

earlier by scheduling its flow group earlier.

3.3 Multi-Path Routing

Beyond ordering the coflows, we design a simple and ef-
ficient multi-path routing algorithm to utilize available
link bandwidth better and to balance network load. The
idea is similar to water-filling — it identifies the bottle-
neck link, and shifts some traffic to the alternative path
with the lightest network load in an iterative fashion.

The bottleneck link is identified based on the time it
takes to finish all the passing flows. In the first itera-
tion, we calculate all the link load and the time it takes
to finish all the passing flows, given that all the flows
go through their direct links. To be particular, for each
link /, the link load is represented as D; = d;, where d;
represents the total amount of data of the fetch i whose
direct path is link /. The completion time is thus calcu-
lated as #; = D;/B;, where B; represents the bandwidth
of link /. We identify the most heavily loaded link /*,
which has the largest #/+, and choose one of its alternative
paths which has the lightest load for traffic re-routing.
In order to compute the percentage of traffic to be re-
routed from /¥, represented by o, we solve the equation
Di+(1—a) /B = (Dj= 0t + Dy) /By, where I is the link
with the heaviest load on the selected detour path.

4 Siphon: Design and Implementation

4.1 Overview

To realize any coflow scheduling strategies in wide-area
data analytics, we need a system that can flexibly enforce
the scheduling decisions. Traditional traffic engineering
[11, 14] techniques can certainly be applied, but they are
not yet available to common cloud users. As is concluded
in Sec. 2, Siphon is designed and implemented as a host-
based building block to achieve this goal.

Fig. 6 shows a high-level overview of Siphon’s archi-
tecture. Processes, called aggregator daemons, are de-
ployed on all (or a subset of) workers, interacting with
the worker processes of the data parallel framework di-
rectly. Conceptually, all these aggregators will form

Datacenter 1 Datacenter 2

Figure 6: An architectural overview of Siphon.
an overlay network, which is built atop inter-datacenter
WANSs and supports the data parallel frameworks.

In order to ease the development and deployment of
potential optimizations for inter-datacenter transfers, the
Siphon overlay is managed with the software-defined
networking principle. Specifically, aggregators oper-
ate as application-layer switches at the data plane, be-
ing responsible for efficiently aggregating, forwarding
and scheduling traffic within the overlay. Network and
flow statistics are also collected by the aggregators ac-
tively. Meanwhile, all routing and scheduling decisions
are made by the central Siphon controller. With a flexible
design to accommodate a wide variety of flow schedul-
ing disciplines, the centralized controller can make fine-
grained control decisions, based on coflow informa-
tion provided by the resource scheduler of data parallel
frameworks.

4.2 Data Plane

Siphon’s data plane consists of a group of aggregator
daemons, collectively forming an overlay that handles
inter-datacenter transfers requested by the data parallel
frameworks. Working as application-layer switches, the
aggregators are designed with two objectives: it should
be simple for data parallel frameworks to use, and sup-
ports high switching performance.

4.2.1 Software Message Switch

The main functionality of an aggregator is to work as a
software switch, which takes care of fragmentizing, for-
warding, aggregating and prioritizing the data flows gen-
erated by data parallel frameworks.

After receiving data from a worker in the data parallel
framework, an aggregator will first divide the data into
fragments such that they can be easily addressable and
schedulable. These data fragments are called messages.
Each data flow will be split into a sequence of messages
to be forwarded within Siphon. A minimal header, with
a flow identifier and a sequence number, will be attached
to each message. Upon reaching the desired destination
aggregator, they will be again reassembled and delivered
to the final destination worker.

The aggregators can forward the messages to any peer
aggregators as an intermediate nexthop or the final desti-
nation, depending on the forwarding decisions made by
the controller. Inheriting the design in traditional Open-
Flow switches, the aggregator looks up a forwarding ta-

ble that stores all the forwarding rules in a hash table, to
ensure high performance. Fortunately, wildcards in for-
warding rule matching are also available, thanks to the
hierarchical organizations of the flow identifiers. If nei-
ther the flow identifier nor the wildcard matches, the ag-
gregator will consult the controller. A forwarding rule
includes a nexthop to enforce routing, and a flow weight
to enforce flow scheduling decisions.

Since messages forwarded to the same nexthop share
the same link, we use a priority queue to buffer all pend-
ing outbound messages to support scheduling decisions.
Priorities are allowed to be assigned to individual flows
sharing a queue, when it is backlogged with a fully satu-
rated outbound link. The control plane will be responsi-
ble for assigning priorities to each flows.

4.2.2 Performance-Centric Implementation

Since an aggregator is I/O-bounded, it is designed and
implemented with performance in mind. It has been im-
plemented in C++ from scratch with the event-driven
asynchronous programming paradigm. Several opti-
mizations are adopted to maximize its efficiency.

Event-driven design. events are raised and handled
asynchronously, including all network I/O events. All
the components are loosely coupled with one another, as
each function in these components is only triggered when
specific events it is designed to handle are raised. As ex-
amples of such an event-driven design, the switch will
start forwarding messages in an input queue as soon as
the queue raises a PacketIn event, and the output queue
will be consumed as soon as a corresponding worker
TCP connection raises a DataSent event, indicating that
the outbound link is ready.

Coroutine-based pipeline design pattern. Because
an aggregator may communicate with a number of
peers at the same time, work conservation must be pre-
served. In particular, it should avoid head-of-line block-
ing, where one congested flow may take all resources and
slow down other non-congested flows. An intuitive im-
plementation based on input and output queues cannot
achieve this goal. To solve this problem, our implemen-
tation takes advantage of a utility called “stackful corou-
tine,” which can be considered as a procedure that can
be paused and resumed freely, just like a thread whose
context switch is controlled explicitly. In an aggrega-
tor, each received message is associated with a coroutine,
and the total number of active coroutines is bounded for
the same flow. This way, we can guarantee that non-
congested flows can be served promptly, even coexisting
with resource “hogs.”

Minimized memory copying. Excessive memory
copying is often an important design flaw that affects per-
formance negatively. We used smart pointers and refer-
ence counting in our implementation to avoid memory

{"Spark Driver Program |
|__(Resource Scheduler) |

e g m— Decision
Redis Makers
Database

(node.js)

Connections to
aggregators

Figure 7: The architecture of the Siphon Controller.

copying as messages are forwarded. In the lifetime of a
message through an aggregator, it is only copied between
the kernel socket buffers for TCP connections and the
aggregator’s virtual address space. Within the aggrega-
tor, a message is always accessed using a smart pointer,
and passed between different components by copying the
pointer, rather than the data in the message itself.

4.3 Control Plane

The controller in Siphon is designed to make flexible
control plane decisions, including flow scheduling and
routing.

Although the controller is a logically centralized en-
tity, our design objective is to make it highly scalable, so
that it is easy to be deployed on a cluster of machines
or VMs when needed. As shown in Fig. 7, the archi-
tectural design of the controller completely decouples
the decision making processes from the server processes
that directly respond to requests from Siphon aggrega-
tors, connecting them only with a Redis database server.
Should the need arises, the decision making processes,
server processes, and the Redis database can be easily
distributed across multiple servers or VMs, without in-
curring additional configuration or management cost.

The Redis database server provides a reliable
and high-performance key-value store and a pub-
lish/subscribe interface for inter-process communication.
Itis used to keep all the states within the Siphon datapath,
including all the live statistics reported by the aggrega-
tors. The publish/subscribe interface allows server pro-
cesses to communicate with decision-making processes
via the Redis database.

The server processes, implemented in node. js, di-
rectly handle the connections from all Siphon aggrega-
tors. These server processes are responsible for pars-
ing all the reports or requests sent from the aggregators,
storing the parsed information into the Redis database,
and responding to requests with control decisions made
by the decision-making processes. It is flexible how the
decision-making processes are implemented, depending
on requirements of the scheduling algorithm.

In inter-coflow scheduling, the controller requires the
full knowledge of a coflow before it starts. This is
achieved by integrating the resource scheduler of the data
parallel framework to the controller’s Pub/Sub interface.
Particularly in Spark, the task scheduler running in the
driver program have such knowledge as soon as the re-
duce tasks are scheduled and placed on workers. We have

modified the driver program, such that whenever there
are new tasks being scheduled, the generated traffic in-
formation will be published to the controller. The incre-
mental Monte Carlo simulations will then be triggered
on the corresponding parallel decision makers.

5 Performance Evaluation

In this section, we present our results from a comprehen-
sive set of experimental evaluations with Siphon, orga-
nized into three parts. First, we provide a coarse-grained
comparison to show the application-level performance
improvements by using Siphon. A comprehensive set
of machine learning workloads is used to evaluate our
framework compared with the baseline Spark. Then, we
try to answer the question how Siphon expedite a single
coflow by putting a simple shuffle under the microscope.
Finally, we evaluate our inter-coflow scheduling algo-
rithm, by using the state-of-the-art heuristic as a baseline.

5.1 Macro-Benchmark Tests

Experimental Setup. In this experiment, we run 6 dif-
ferent machine learning workloads on a 160-core clus-
ter, which spans across 5 geographical regions. Perfor-
mance metrics such as application runtime, stage com-
pletion time and shuffle read time are to be evaluated.
The shuffle read time is defined as the completion time
of the slowest data fetch in a shuffle. It reflects the time
needed for the last task to start computing, and it deter-
mines the stage completion time to some extent.

The Spark-Siphon cluster. We set up a 160-
core, 520 GB-memory Spark cluster. Specifically, 40
nil-highmem-2 instances are evenly disseminated in 5
Google Cloud datacenter (N. Carolina, Oregon, Bel-
gium, Taiwan, and Tokyo). Each instance provides 2
vCPUs, 13 GB of memory, and a 20 GB SSD of disk
storage. Except for one instance in the N. Carolina re-
gion works as both Spark master and driver, all instances
serve as Spark standalone executors. All instances in use
are running Apache Spark 2.1.0.

The Siphon aggregators run on 10 of the executors,
2 in each datacenter. An aggregator is responsible for
handling Pub/Sub requests from 4 executors in the same
datacenter. The Siphon controller runs on the same in-
stance as the Spark master, in order to minimize the com-
munication overhead between them.

Note that we do not launch extra resources for Siphon
aggregators to make the comparison fair. Even though
they occupy some computation resource and system I/Os
with their co-located Spark executors, the consumption
is minimal.

Workload specifications. 6 machine learning work-
loads, with multiple jobs and multiple stages, are used

z | 24 mm Siphon e Spark Workload # Total Extra Sjphon Shuffle Spark Shuffle Runtime Cost

2 Shuffles Bandwidth Bandwidth Read Time (s) Read Time (s) Reduction Difference
=400 Usage(GB) Usage(MB) (%) (¢)
2 - 41 7 ALS 18 40.47 21863 46.8 905 483 2656
8 00 PCA 2 0.51 37.6 33 13.7 76.1 -6.80
g - b8 BMM 1 423 2911.1 48.9 97.8 50.0 -29.26
2 -1 = Pearson 2 0.57 23.8 36 13.1 72.6 -6.23
0lS — PGA BMM Pearson wWav — Fa w2v 5 0.45 10.2 5.8 9.6 39.9 -2.49
FG 2 0.57 20.5 1.77 1.87 54 -0.05

Figure 8: Average application run time.

Table 2: Summary of shuffles in different workloads (present the run with median application run time).

EEm Siphon Stage

I Spark Stage

X% Siphon Shuffle
- Spark Shuffle

30
0.8 25

0.6

v
04 Bl Siphon Stages
1 —=-- Spark Stages
—— Siphon Shuffles
o —— Spark Shuffles

O st 0
1 3 9 27 81

ALS Stage Completion Time / Shuffle Read Time (s)
(a) Alternating Least Squares (in CDF).

Stage Completion Time (s)

0.2

1

PCA Stage Inde;
(b) Principal Component Analysis.

I Siphon Stage
Il Spark Stage
X% Siphon Shuffle

++ Spark Shuffle

250

200

100

Stage Completion Time (s)

50

0 1 2 3 4 5 6 7
BMM Stage Index

(c) Block Matrix Multiplication.

1201 mmm Siphon Stage

Wl Spark Stage

¢ Siphon Shuffle
++ Spark Shuffle

EEm Siphon Stage

I Spark Stage

X% Siphon Shuffle
«* Spark Shuffle

1004

®

60

Stage Completion Time (s)

Stage Completion Time (s)

3

0 1 2 3 4 5 0 1 2
Pearson Stage Index
(d) Pearson’s Correlation.

3 1
Word2Vec Stage Index
(e) Word2Vec distributed presentation of words.

I Siphon Stage

I Spark Stage

300 Siphon Shuffle
++ Spark Shuffle

Stage Completion Time (s)

2 3 4 5
FP-Growth Stage Index

(f) FP-growth frequent item sets.

5 6 7 8 9 0 1

Figure 9: Shuffle completion time and stage completion time comparison (present the run with media application run time).

for evaluation.

ALS: Alternating Least Squares.

PCA: Principle Component Analysis.

BMM: Block Matrix Multiplication.

Pearson: Pearson’s correlation.

W2V: Word2Vec distributed presentation of words.
FG: FP-Growth frequent item sets.

These workloads are the representative ones from
Spark-Perf Benchmark', the official Spark performance
test suite created by Databricks”. The workloads that are
not evaluated in this paper share the same characteris-
tics with one or more selected ones, in terms of the net-
work traffic pattern and computation intensiveness. We
set the scale factor to 2.0, which is designed for a 160-
core, 600 GB-memory cluster.

Methodologies. With different workloads, we com-
pare the performance of job executions, with or with-
out Siphon integrated as its cross-datacenter data transfer
service.

Note that, without Siphon, Spark works in the same
way as the out-of-box, vanilla Spark, except one slight
change on the TaskScheduler. Our modification elim-
inates the randomness in the Spark task placement deci-
sions. In other words, each task in a given workload will
be placed on a fixed executor across different runs. This

'https://github.com/databricks/spark-perf
’https://databricks.com/.

way, we can guarantee that the impact of task placement
on the performance has been eliminated.

Performance. We run each workload on the same in-
put dataset for 5 times. The average application run time
comparisons across 5 runs are shown in Fig. 8. Later we
focus on job execution details, taking the run with me-
dian application run time for example. Table 2 summa-
rizes the total shuffle size and shuffle read time of each
workload. Further, Fig. 9 breaks down the time for net-
work transfers and computation in each stage, providing
more insight.

Among the 6 workloads, BMM, the most network-
intensive workload, benefits most from Siphon. It enjoys
a 23.6% reduction in average application run time. The
reason is that it has one huge shuffle — sending more
than 40 GB of data in one shot — and Siphon can help
significantly. The observation can be proved by Fig. 9(c),
which shows that Siphon manages to reduce around 50
seconds of shuffle read time.

Another network-intensive workload is ALS, an iter-
ative workload. The average run time has been reduced
by 13.2%. The reason can be easily seen with the in-
formation provided in Table 2. During a single run of
the application, 40.47 GB of data is shuffled through the
network, in 18 stages. Siphon collectively reduces the
shuffle time by more than 30 seconds. Fig. 9(a) shows
the CDFs of shuffle completion times and stage comple-

tion times, using Spark and Siphon respectively (note the
x-axis is in log scale). As we observe, the long tail of
the stage completion time distribution is reduced because
Siphon has significantly improved the performance of all
shuffle phases.

The rest of the workloads generate much less shuffled
traffic, but their shuffle read time have also been reduced
(5.4%~76.1%).

PCA and Pearson are two workloads that have
network-intensive stages. Their shuffle read time consti-
tutes a significant share in some of the stages, but they
also have computation intensive stages that dominate
the application run time. For these workloads, Siphon
greatly impacts the job-level performance, by minimiz-
ing the time used for shuffle (Table 2).

W2V and FG are two representative workloads whose
computation time dominates the application execution.
With these workloads, Siphon can hardly make a differ-
ence in terms of application run time, which is mostly
decided by the computation stragglers. An extreme ex-
ample is shown in Fig. 9(e). Even though the shuffle read
time has been reduced by 4 seconds (Table 2), the com-
putation stragglers in Stage 4 and Stage 6 will still slow
down the application by 0.7% (Fig. 8). Siphon is not
designed to accelerate these computation-intensive data
analytic applications.

Cost Analysis. As the acceleration of Spark shuf-
fle reads in Siphon is partially due to the relay of traf-
fic through intermediate datacenters, it is concerned how
it affects the overall cost for running the data analytics
jobs. On the one hand, the relay of traffic increases the
total WAN bandwidth usage, which is charged by public
cloud providers. On the other hand, the acceleration of
jobs reduces the cost for computation resources.

We present the total cost of running the machine learn-
ing jobs in Table 2, based on Google Cloud pricing?.
Each instance used in our experiment costs $1.184 per
hour, and our cluster costs ¢ 0.6578 per second. As a
comparison, the inter-datacenter bandwidth only costs 1
cent per GB.

As a result, Siphon actually reduced the total cost of
running all workloads (Table 2). On the one hand, a
small portion of inter-datacenter traffic has been relayed.
On the other hand, the idle time of computing resources
has been reduced significantly, which exceeds the extra
bandwidth cost.

5.2 Single Coflow Tests

Experimental Setup. In the previous experiment,
Siphon works well in terms of speeding up the coflows
in complex machine learning workloads. However, one
question remains unanswered: how does each compo-

3https://cloud.google.com/products/calculator/

nent of Siphon contribute to the overall reduction on the
coflow completion time? In this experiment, we use a
smaller cluster to answer this question by examining a
single coflow more closely.

The cross-datacenter Spark cluster consists of 19
workers and 1 master, spanning 5 datacenters. The Spark
master and driver is on a dedicated node in Oregon.
The geographical location of worker nodes is shown in
Fig. 13, in which the number of executors in different
datacenters is shown in the black squares. The same in-
stance type (n1-highmem-2) is used.

Most software configurations are the same as the set-
tings used in Sec. 5.1, including the Spark patch. In other
words, the cluster still offers a fixed task placement for a
given workload.

In order to study the system performance that gener-
ates a single coflow, we decided to use the Sort appli-
cation from the HiBench benchmark suite [13]. Sort
has only two stages, one map stage of sorting input data
locally and a reduce stage of sorting after a full shuf-
fle. The only coflow will be triggered at the start of the
reduce stage, which is easier to analyze. We prepare
the benchmark by generating 2.73 GB of raw input in
HDFS. Every datacenter in the experiment stores an ar-
bitrary fraction of the input data without replication, but
the distribution of data sizes is skewed.

We compare the shuffle-level performance achieved
by the following 4 schemes, with the hope of providing a
comprehensive analysis of the contribution of each com-
ponent of Siphon:

e Spark: The vanilla Spark framework, with fixed
task placement decisions, as the baseline for com-
parison.

e Naive: Spark using Siphon as its data transfer ser-
vice, without any flow scheduling or routing deci-
sion makers. In this case, messages are scheduled
in a round-robin manner, and the inter-datacenter
flows are sent directly through the link between the
source to the destination aggregators.

o Multi-path: The Naive scheme with the multi-path
routing decision maker enabled in the controller.

e Siphon: The complete Siphon evaluated in Sec. 5.1.
Both LFGF intra-coflow scheduling and multi-path
routing decision makers are enabled.

Job and stage level performance. Fig. 10 illustrates
the performance of sort jobs achieved by the 4 schemes
aforementioned across 5 runs, with respect to their job
completion times, as well as their stage completion times
for both map and reduce stages. As we expected, all 3
schemes using Siphon have improved job performance
by accelerating the reduce stage, as compared to Spark.
With Naive, the performance improvement is due to a
higher throughput achieved by pre-established parallel
TCP connections between Siphon aggregators.The im-

1.0

250 Map Stage
Il Reduce Stage

15F.3

170.3

] 164.0
150 E— 139.4

134.7

100

533

Sort Job Completion Time (s)

Reduce Stage Execution Time (s)
153 N

0

Spark Naive Multipath Siphon Spark Naive

Figure 10: Average job completion time across
5 runs.

provement of Multi-path over Naive is attributed to a fur-
ther reduction of reduce stage completion times — with
multi-path routing, the network load can be better bal-
anced across links to achieve a higher throughput and
faster network transfer times. Finally, it is not surpris-
ing that Siphon, benefiting the advantages of both intra-
coflow scheduling and Multi-path routing, achieves the
best job performance.

To obtain fine-grained insights on the performance im-
provement, we break down the reduce completion time
further into two parts: the shuffle read time (i.e., coflow
completion time) and the task execution time. As is
shown in Fig. 11, the improvement of Naive over Spark
is mainly attributed to a reduction of the shuffle read
time.Multi-path achieves a substantial improvement of
shuffle read time over Naive, since the network trans-
fer completes faster by mitigating the bottleneck through
multi-path routing. Siphon achieves a similar shuffle read
time with Multi-path, with a slight reduction in the task
execution time. This implies that multi-path routing is
the main contributing factor for performance improve-
ment, while intra-coflow scheduling helps marginally on
the straggler mitigation as expected.

Shuffle: Spark v.s. Naive. To allow a more in-depth
analysis of the performance improvement achieved by
the baseline Siphon (Naive), we present the CDFs of
shuffle read times achieved by Spark and Naive, respec-
tively, in Fig. 12. Compared with the CDF of Spark that
exhibits a long tail, all the shuffle read times are reduced
by ~10 s with Naive, thanks to the improved through-
put achieved by persistent, parallel TCP connections be-
tween aggregators.

Shuffle: intra-coflow scheduling and multi-path
routing. We further study the effectiveness of the de-
cision makers, with Multi-path and Siphon’s CDFs pre-
sented in Fig. 12.

With multi-path routing enabled, both Multi-path and
Siphon achieve shorter completion times (~50 s) for
their slowest flows respectively, compared to Naive
(>60 s) with direct routing. Such an improvement is
contributed by the improved throughput with a better bal-
anced load across multiple paths. It is also worth noting
that the percentage of short completion times achieved
with Multi-path is smaller than Naive — 22% of shuf-

ecution across 5 runs.

Task Execution
mmm Shuffle Read

13{).3

0.84

13?.3 0.6 9

0.4
——- Spark

—— Naive
——- Multipath
—— Siphon

0.2+

0.0 T T T T T T T
0 10 20 30 40 50 60 70 80
Shuffle Read Time (s)

Multipath Siphon

Figure 11: Breakdowns of the reduce stage ex- Figure 12: CDF of shuffle read time (present

the run with median job completion time).
fle reads complete within 18 s with Multi-path, while
35% complete with Naive. The reason is that by rerout-
ing flows from bottleneck links to lightly loaded ones via
their alternative paths, the network load, as well as shuf-
fle read times, will be better balanced.

It is also clearly shown that with LFGF scheduling, the
completion time of the slowest shuffle read is almost the
same with that achieved by Multi-path. This meets our
expectation, since the slowest flow will always finish at
the same time in spite of the scheduling order, given a
fixed amount of network capacity.

We further illustrate the inter-datacenter traffic during
the sort job run time in Fig. 13, to intuitively show the
advantage of multi-path routing. The sizes of the traffic
between each pair of datacenters are shown around the
bidirectional arrow line, the thickness of which is pro-
portional to the amount of available bandwidth shown in
Table 1.

The narrow link from Taiwan to S. Carolina be-
comes the bottleneck, which needs to transfer the largest
amount of data. With our multi-path routing algorithm,
part of the traffic will be rerouted through Oregon. We
can observe that the original traffic load along this path
is not heavy (only 149 MB from Taiwan to Oregon and
170 MB from Oregon to S. Carolina), and both alternate
links have more available bandwidth. This demonstrates
that our routing algorithm works effectively in selecting
optimal paths to balance loads and alleviate bottlenecks.

5.3 Inter-Coflow Scheduling

In this section, we evaluate the effectiveness of Monte
Carlo simulation-based inter-coflow scheduling algo-
rithm, by comparing the average and the 90th-percentile
Coflow Completion Time (CCT) with existing heuristics.
Testbed. To make the comparison fair, we set up a
testbed on a private cloud, with 3 datacenters located in
Victoria, Toronto, and Montreal, respectively. We have
conducted a long-term bandwidth measurement among
them, with more than 1000 samples collected for each
link. Their distributions are depicted in Fig. 14, which
are further used in the online Monte Carlo simulation.
Benchmark. We use the Facebook benchmark [8]
workload, which is a 1-hour coflow trace from 150 work-

210

206 Oregon 216 Belgium
Tokyo AL &9 d49 167
2074
749 14\170 2
14 T 227
<197\—/

227)
S. Carolina

180

170

Available Bandwidth (Mbps)

g

Figure 13: The summary of inter-datacenter traffic in the shuffle Figure

200

= 1904
=

160 4

- Il Average [90th Percentile

'y

T

T |

BB |
1

Ll

g

Normalized CCT (%)

J[E——

TV TM VT V-MM-T M-V <25% 25-49% 50-74% >75%
14: Bandwidth distri- Figure 15: Average and 90th percemlle CCT

phase of the sort application. bution among datacenters. comparison.

ers. We assume workers are evenly distributed in the
3 datacenters, and generate aggregated flows on inter-
datacenter links. To avoid overflow, the flow sizes are
scaled down, with the average load on inter-datacenter
links reduced by 30%.

Methodology. A coflow generator, together with a
Siphon aggregator, is deployed in each datacenter. All
generated traffic goes through Siphon, which can en-
force proper inter-coflow scheduling decisions on inter-
datacenter links. As a baseline, we experiment with the
Minimum Remaining Time First (MRTF) policy, which
is the state-of-the-art heuristic with full coflow knowl-
edge [27]. The metrics CCTs are then normalized to the
performance of the baseline algorithm.

Performance. Fig. 15 shows that Monte Carlo
simulation-based inter-coflow scheduling outperforms
MRTF in terms of both average and tail CCTs. Consid-
ering all coflows, the average CCT is reduced by ~10%.
Since the coflow size in the workload follows a long-
tail distribution, we further categorize coflows in 4 bins,
based on the total coflow size. Apparently, the perfor-
mance gain mostly stems from expediting the largest
bin — elephant coflows that can easily overlap with each
other. Beyond MRTF, Monte Carlo simulations can care-
fully study all possible near-term coflow ordering with
respect to the unpredictable flow completion times, and
enforce a decision that is statistically optimal.

6 Related Work

Wide-Area Data Analytics. For data analytics span-
ning across datacenters, wide area network links eas-
ily become the performance bottleneck. To reduce the
usage of inter-datacenter bandwidth, existing works ei-
ther tweak applications to generate different workloads
[12, 16, 23, 24], or assign input datasets and tasks to
datacenters optimally [19, 22]. However, all these ef-
forts focus on adding wide-area network awareness to
the computation framework, without tackling the lower-
level inter-datacenter data transfers directly. Orthogonal
and complementary to these efforts, Siphon is designed
for the inter-datacenter network optimization — it deliv-
ers the inter-datacenter traffic with better efficiency, re-
gardless of the upper-layer decisions on task placement
or execution plan.

Software-Defined Networking (SDN). The concept
of SDN has been proposed to facilitate the innovation
in network control plane [2, 18].In the inter-datacenter
wide-area network, SDN has been recently adopted to
provide centralized control with elegantly designed traf-
fic engineering strategies [11, 14, 15]. Different from
these efforts, our work realizes the SDN principle in the
application layer, without requiring hardware support.
Moreover, our work focuses on improving performance
for data analytics jobs with more complex communica-
tion patterns, controlling flows at a finer granularity.

Network Optimization for Data Analytics. Ac-
counting for the job-level semantics, coflow scheduling
algorithms (e.g., [6, 8, 9]) are proposed to minimize the
average coflow completion time within a datacenter net-
work, which is assumed to be free of congestion. With-
out such assumptions, joint coflow scheduling and rout-
ing strategies [17,28] are proposed in the datacenter net-
work, where both the core and the edge are congested.
Different from these models, the network in the wide
area has congested core and congestion-free edge, since
the inter-datacenter links have much lower bandwidth
than the access links of each datacenter. Apart from the
different network model, our coflow scheduling handles
the uncertainty of the fluctuating bandwidth in the wide
area, while the existing efforts assume that the bandwidth
capacities remain unchanged.

7 Concluding Remarks

To address the performance degradation of data analytics
deployed across geographically distributed datacenters,
we have designed and implemented Siphon — a building
block that can be seamlessly integrated with existing data
parallel frameworks — to expedite coflow transfers. Fol-
lowing the principles of software-defined networking, a
controller implements and enforces several novel coflow
scheduling strategies.

To evaluate the effectiveness of Siphon in expediting
coflows as well as analytics jobs, we have conducted ex-
tensive experiments on real testbeds, with Siphon de-
ployed across geo-distributed datacenters. The results
have demonstrated that Siphon can effectively reduce the
completion time of a single coflow by up to 76% and im-
prove the average coflow completion time.

References

[1

—

[2

—

—
(98]
[t

[4

[l

[5]

[6]

[8

=

[9

—

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

Apache Hadoop Official Website.
org/.

http://hadoop.apache.

Open Network Foundation Official Website.
opennetworking.org/.

https://wuw.

ALIZADEH, M., GREENBERG, A., MALTZ, D. A., PADHYE,
J., PATEL, P., PRABHAKAR, B., SENGUPTA, S., AND SRIDHA-
RAN, M. Data Center TCP (DCTCP). In Proc. ACM SIGCOMM
(2010).

ALIZADEH, M., YANG, S., SHARIF, M., KATTI, S., MCKE-
OWN, N., PRABHAKAR, B., AND SHENKER, S. pFabric: Min-
imal Near-Optimal Datacenter Transport. In Proc. ACM SIG-
COMM (2013).

BECK, J. C., AND WILSON, N. Proactive Algorithms for Job
Shop Scheduling with Probabilistic Durations. Journal of Artifi-
cial Intelligence Research 28 (2007), 183-232.

CHOWDHURY, M., AND STOICA, I. Efficient Coflow Scheduling
Without Prior Knowledge. In Proc. ACM SIGCOMM (2015).

CHOWDHURY, M., ZAHARIA, M., MA, J., JORDAN, M., AND
STOoICA, 1. Managing Data Transfers in Computer Clusters with
Orchestra. In Proc. ACM SIGCOMM (2011).

CHOWDHURY, M., ZHONG, Y., AND STOICA, I. Efficient
Coflow Scheduling with Varys. In Proc. ACM SIGCOMM (2014).

DOGAR, F. R., KARAGIANNIS, T., BALLANI, H., AND ROW-
STRON, A. Decentralized Task-Aware Scheduling for Data Cen-
ter Networks. In Proc. ACM SIGCOMM (2014).

HONG, C. Y., CAESAR, M., AND GODFREY, P. B. Finishing
Flows Quickly with Preemptive Scheduling. In Proc. of ACM
SIGCOMM (2012).

HoNG, C.-Y., KANDULA, S., MAHAJAN, R., ZHANG, M.,
GILL, V., NANDURI, M., AND WATTENHOFER, R. Achieving
High Utilization with Software-Driven WAN. In Proc. of ACM
SIGCOMM (2013).

HsIEH, K., HARLAP, A., VIJAYKUMAR, N., KONOMIS, D.,
GANGER, G. R., GIBBONS, P. B., AND MUTLU, O. Gaia:
Geo-Distributed Machine Learning Approaching LAN Speeds.
In Proc. USENIX Symposium on Networked Systems Design and
Implementation (NSDI) (2017).

HUANG, S., HUANG, J., DAL, J., XIE, T., AND HUANG, B. The
HiBench Benchmark Suite: Characterization of the MapReduce-
Based Data Analysis. In Proc. International Conference on Data
Engineering Workshops (ICDEW) (2010).

JAIN, S., KUMAR, A., MANDAL, S., ONG, J., POUTIEVSKI,
L., SINGH, A., VENKATA, S., WANDERER, J., ZHOU, J., ZHU,
M., ET AL. B4: Experience with a Globally-Deployed Software
Defined WAN. In Proc. of ACM SIGCOMM (2013).

JIN, X., L1, Y., WEL, D, L1, S., Gao, J., Xu, L., LI, G.,
XU, W., AND REXFORD, J. Optimizing Bulk Transfers with
Software-Defined Optical WAN. In Proc. of ACM SIGCOMM
(2016).

Kroupas, K., MAMEDE, M., PREGUICA, N., AND Ro-
DRIGUES, R. Pixida: Optimizing Data Parallel Jobs in Wide-
Area Data Analytics. VLDB Endowment 9, 2 (2015), 72-83.

L1, Y., JIANG, S. H.-C., TAN, H., ZHANG, C., CHEN, G.,
ZHou, J., AND LAuU, F. Efficient Online Coflow Routing and
Scheduling. In Proc. ACM International Symposium on Mobile
Ad Hoc Networking and Computing (MobiHoc) (2016).

MCKEOWN, N., ANDERSON, T., BALAKRISHNAN, H.,
PARULKAR, G., PETERSON, L., REXFORD, J., SHENKER, S.,
AND TURNER, J. OpenFlow: Enabling Innovation in Campus
Networks. ACM SIGCOMM CCR 38, 2 (2008), 69-74.

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

PU, Q., ANANTHANARAYANAN, G., BODIK, P., KANDULA,
S., AKELLA, A., BAHL, P., AND STOICA, I. Low Latency Geo-
Distributed Data Analytics. In Proc. ACM SIGCOMM (2015).

RASLEY, J., STEPHENS, B., DIXON, C., ROZNER, E., FELTER,
W., AGARWAL, K., CARTER, J., AND FONSECA, R. Planck:
Millisecond-Scale Monitoring and Control for Commodity Net-
works. In Proc. of ACM SIGCOMM (2014).

SUSANTO, H., JIN, H., AND CHEN, K. Stream: Decentralized
Opportunistic Inter-Coflow Scheduling for Datacenter Networks.
In Proc. IEEE International Conference on Network Protocols
(ICNP) (2016).

VISWANATHAN, R., ANANTHANARAYANAN, G., AND
AKELLA, A. Clarinet: Wan-Aware Optimization for Analytics
Queries. In Proc. USENIX Symposium on Operating Systems
Design and Implementation (OSDI) (2016).

VULIMIRI, A., CURINO, C., GODFREY, P., JUNGBLUT, T.,
PADHYE, J., AND VARGHESE, G. Global Analytics in the Face
of Bandwidth and Regulatory Constraints. In Proc. USENIX
Symposium on Networked Systems Design and Implementation
(NSDI) (2015).

VULIMIRI, A., CURINO, C., GODFREY, P., KARANASOS,
K., AND VARGHESE, G. WANalytics: Analytics for a Geo-
Distributed Data-Intensive World. In Proc. Conference on In-
novative Data Systems Research (CIDR) (2015).

ZAHARIA, M., CHOWDHURY, M., DAS, T., DAVE, A., MA, J.,
MCCAULEY, M., FRANKLIN, M., SHENKER, S., AND STOICA,
I. Resilient Distributed Datasets: A Fault-Tolerant Abstraction
for In-Memory Cluster Computing. In Proc. USENIX Sympo-
sium on Networked Systems Design and Implementation (NSDI)
(2012).

ZATS, D., DAS, T., MOHAN, P., BORTHAKUR, D., AND KATZ,
R. DeTail: Reducing the Flow Completion Time Tail in Data-
center Networks. In Proc. ACM SIGCOMM (2012).

ZHANG, H., CHEN, L., Y1, B., CHEN, K., CHOWDHURY, M.,
AND GENG, Y. CODA: Toward Automatically Identifying and
Scheduling Coflows in the Dark. In Proc. ACM SIGCOMM
(2016).

ZHAO, Y., CHEN, K., BAI, W., YU, M., TIAN, C., GENG, Y.,
ZHANG, Y., L1, D., AND WANG, S. Rapier: Integrating Rout-
ing and Scheduling for Coflow-Aware Data Center Networks. In
Proc. IEEE INFOCOM (2015).

