
A Single Machine System forQuerying Big Graphs with PRAM
Yang Liu

1
, Wenfei Fan

2,1,3
, Shuhao Liu

2
, Xiaoke Zhu

1
, Jianxin Li

1

Beihang University
1
, China Shenzhen Institute of Computing Sciences

2
, China University of Edinburgh

3
, UK

ly_act@buaa.edu.cn,wenfei@inf.ed.ac.uk,shuhao@sics.ac.cn,zhuxk@buaa.edu.cn,lijx@buaa.edu.cn

ABSTRACT
This paper develops Planar (Plug and play PRAM), a single-machine

system for graph analytics by reusing existing PRAM algorithms,

without the need for designing new parallel algorithms. Planar
supports both out-of-core and in-memory analytics. When a graph

is too big to fit into the memory of a machine, Planar adapts PRAM
to limited resources by extending a fixpoint model with multi-core

parallelism, using disk as memory extension. For an in-memory

task, it dedicates all available CPU cores to the task, and allows

parallelly scalable PRAM algorithms to retain the property, i.e., the
more cores are available, the less runtime is taken. We develop a

graph partitioning and work scheduling strategy to accommodate

subgraph I/O, balance memory usage and reduce runtime, beyond

traditional partitioners for multi-machine systems. Using real-life

graphs, we empirically verify that Planar outperforms SOTA in-

memory and out-of-core systems in efficiency and scalability.

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://github.com/SICS-Fundamental-Research-Center/Planar.

1 INTRODUCTION
A host of single-machine systems have been developed for graph

analytics via multi-core parallelism, e.g., [6, 35, 57, 64, 65, 72, 78, 83,
89, 94, 99, 100, 105]. These systems typically adopt a vertex-centric
(VC) or edge-centric (EC) parallel model. A VC (resp. EC) program
pivots computation around each vertex (resp. edge); it may only di-

rectly access its local data and adjacent edges (resp. endpoints), but

it has to exchange information with “remote” entities via message

passing. VC/EC is often inefficient in programming and execution

[6, 29, 40, 86]. It is nontrivial to program for problems that are con-

strained by “joint” conditions on multiple vertices, e.g., subgraph
isomorphism [32]. Moreover, the local scope of VC/EC operations

often incurs redundant computation [86], and its message-passing

model introduces extra synchronization complexity [5]. These over-

heads are often excessive, leading to limited scalability and high

COST [68] of a graph system under a shared-memory architecture.

On the other hand, parallel models have been studied for shared-

memory architectures for decades, notably PRAM (Parallel Random

Access Machine) [30, 36, 88]. PRAM allows multiple processors to

work in parallel via single-instruction-multiple-data (SIMD), and syn-
chronize via shared memory. A large number of PRAM algorithms

are already in place, and many of them are provably work-time

optimal [44] or parallelly scalable, i.e., they guarantee that the more

processors are used, the less parallel runtime is taken [56].

Is it possible to develop a single-machine graph system in which

one can plug existing PRAM algorithms, and the system executes

the algorithms to make the most of multi-core parallelism and the

shared memory of the machine? This way, the users do not have

to think like a vertex/edge and develop new parallel algorithms

starting from scratch; instead, they can simply leverage the decades

of work on PRAM and make effective use of the well-developed

PRAM algorithms, capitalizing on their scalability and efficiency.

It is, however, nontrivial to run PRAM algorithms in a single-

machine system. The PRAM model assumes that the memory is

large enough to load the entire dataset at once, and there are a poly-

nomial number of processors [7, 38]. In contrast, a single-machine

system has a fixed number of CPU cores, limited memory capacity

and disk I/O bandwidth. One has to simulate a polynomial number

of cores assumed by PRAM. Worse yet, for out-of-core processing of
graphs that are too large to fit into the main memory of a machine

at once, it needs to use disk as memory extension [6, 35, 57, 65,

78, 94, 105]. Such systems have to carefully partition graphs and

schedule I/O and CPU operations so that their CPUs do not have

to wait for long for subgraphs to be loaded into the memory.

Contributions & Organization. This paper develops Planar (Plug
and play PRAM), a single-machine system for running PRAM algo-

rithms for graph analytics. Underlying Planar are the following.

(1) Parallel model (Section 3). Planar proposes a unified parallel

model for both in-memory and out-of-core tasks. For a query class

Q, it takes as input an existing PRAM algorithm A and a graph

𝐺 . When 𝐺 fits into the memory of a single machine, it executes

algorithmA on𝐺 with all available cores.When the graph is too big,

it partitions 𝐺 into subgraphs such that each subgraph can fit into

the memory, and uses the secondary storage as memory extension.

It loads the subgraphs into memory one by one, and runs SIMD

for multi-core parallelism on each in-memory subgraph with all

available cores. It iterates the computation over all subgraphs until

it reaches a fixpoint, adapting the graph-centric model (GC) [29].
The parallel model makes the first effort to adapt PRAM to phys-

ical machines in the real world. It simplifies parallel graph pro-

gramming by reusing existing PRAM algorithms, and retains their

parallel scalability for in-memory tasks. For out-of-core tasks, it

extends the data partitioning parallel model of GC [29] with multi-

core parallelism and shared-memory synchronization.

(2) Partitioning and scheduling (Section 4). We study a new prob-

lem, which aims to overlap CPU and I/O operations, balance the

use of limited memory and cope with the dynamic behaviors of it-

erative rounds; these new challenges are not encountered by graph

partitioners for multi-machine systems. We show the intractabil-

ity of the problem, and develop an effective joint partitioning and

scheduling strategy. As preprocessing, we partition the graph into

small blocks; at runtime, we adapt to available memory and system

bottleneck dynamically via grouped block processing.

(3) Experimental evaluation (Section 5). Using real-life and syn-

thetic graphs, we empirically find the following. For weakly con-

nected components (WCC), single-source shortest path (SSSP),
PageRank (PR), vertex coloring (Coloring), minimum spanning tree

https://github.com/SICS-Fundamental-Research-Center/Planar

(MST), and random walk (RW), (a) Planar outperforms the state-

of-the-art (SOTA) out-of-core systems by 34.42× on average, up to

302.01×. (b) On average it is 5.62× faster than the SOTA in-memory

system. For parallelly scalable PRAM algorithms, it beats the SOTA

by 5.91–9.58×; with 6× cores, it speeds up by 3.36×. (c) Its adaptive
partitioning and scheduling strategy improves performance by 1.87–

2.12×. (d) It performs as well as the SOTA multi-machine systems

that use 4–10 machines, saving the monetary cost by at least 81.7%.

We discuss PRAM in Section 2 and future work in Section 6. We

defer proofs and Planar programs to [2] for the lack of space.

Related work. We categorize the related work as follows.

Parallel models. Several models are in place for graph analytics. (1)

Vertex-centric (VC) [66, 72, 83] and edge-centric (EC) [65, 78, 105]
models parallelize computation centered around graph neighbor-

hoods, by programming from the perspective of a single vertex/edge.

This makes some graph algorithms inefficient for, e.g., graph simula-

tion [26]. (2) Graph-centric model (GC) [24, 29] parallelizes sequen-
tial graph algorithms across subgraphs, for user to think like a graph.

(3) Hybrid model [106] adopts the data partitioning parallelism of

GC and operation-level parallelism of VC at a single machine.

PRAM [30, 36, 88] supports SIMD parallelism for general com-

putation. It facilitates interprocessor communication and synchro-

nization via shared memory. However, several practical difficulties

arise in mapping PRAM algorithms onto real-life physical machines

[7], e.g., the fixed number of CPU cores and limited memory ca-

pacity. Some programming models, e.g., ICE [34] and XMTC [58],

allow users to write lockstep programs similar to PRAM algorithms.

These models, however, do not support out-of-core computing.

Planar proposes a parallel model to fit single-machine shared-

memory parallelism. As opposed to message passing-based VC/EC,
it supports subgraph-based processing beyond neighborhood, and

synchronizes via shared memory, reducing redundant work and

I/O. Moreover, it simplifies parallel graph programming by reusing

existing PRAM algorithms and retaining their parallel scalability.

Planar extends GC in the following. GC was designed for multi-

machine systems that load all subgraphs just once to different ma-

chines and process the subgraphs simultaneously via message pass-

ing. It supports neither intra-subgraph parallelism nor out-of-core

computation. In contrast, Planar targets multi-core parallelism at a

single machine. It separates (a) intra-subgraph parallelism via SIMD

parallelism and shared-memory synchronization of PRAM, from

(b) inter-subgraph parallelism by simulating the fixpoint model

of GC and partitioning/scheduling graphs for out-of-core tasks. It

supports both in-memory and out-of-core computations.

Planar simplifies the VC programming and execution of hybrid

[106] by reusing PRAMprograms, retaining their parallel scalability,

and demanding neither code revamp nor manual tuning of hybrid.

Single-machine systems. (1) In-memory ones [35, 64, 72, 83, 99, 100,
102] assume that a graph can be loaded entirely into memory. They

adopt variants of VC/EC [72, 99, 100], and improve data locality

via scheduling [99]. (2) Semi-external systems (Blaze [52] and [62,

101]) fit all vertex data in memory, and load (immutable) edge

data from the secondary storage on-demand. They cannot handle

graphs with a large number of vertices. (3) Out-of-core systems [6,
52, 57, 62, 65, 78, 89, 101, 105] use disk as memory extension, and

focus on reducing the I/O cost of swapping data between the disk

and memory. CLIP [6] adopts an asynchronous model to reduce

redundant synchronization cost of EC, which may compromise

the correctness. All the previous systems adopt VC/EC, except
MiniGraph [106] that employs a hybrid model.

Planar supports a new parallel model to speed up in-memory

and out-of-core graph computations, outperforming SOTA of both

types (Section 5). For out-of-core execution in particular, it proposes

an adaptive strategy for partitioning and scheduling, to cope with

the dynamic runtime behavior, and reduce I/O and parallel runtime.

These challenges are not encountered by in-memory systems.

Hardware-accelerated systems [21, 51, 65, 91, 97, 103] leverage GPUs
or FPGAs to speed up graph computation. These systems propose

various optimizations to leverage hardware features, e.g., a memory

hierarchy with fine-grained accesses, low-level task optimization,

and massive hardware parallelism, which are not accessible in CPU-

based systems like Planar. Despite the significant speedups, they
come with several trade-offs, including a high cost, increased pro-

gramming complexity, and reduced flexibility in practical use. These

factors are at odds with our design objectives in Planar, which aims

to provide a cost-effective and general-purpose solution.

Multi-machine systems [22–24, 29, 40, 63, 71, 86, 90, 95, 104] support
big graph analytics by scaling out. Such systems adopt a shared-

nothing architecture: they partition the input graph, and load the

fragments to the machines at once; all workers process their local

fragments in-memory in parallel, and synchronize via message

passing. The communication cost and workload balancing among

workers are thus two vital issues to performance. Rather than scal-

ing out with multiple machines, Planar seeks cost-effective scaling
up. It meets new challenges, e.g., limited memory and excessive I/O.

Graph partitioning. For multi-machine systems, the topic has been

well studied (see [14, 17] for surveys). (1) Edge-cut [8, 47, 48, 55, 84]

partitions vertices into disjoint sets and cuts edges. It promotes

locality but may lead to imbalanced fragments [37]. (2) Vertex-cut

[21, 43, 67, 74, 75, 98, 103] partitions edges into disjoint sets and

allows mirrored vertices. It balances partitions at the cost of locality

[18]. Recent out-of-core systems, e.g., [65, 105], employ a 2D parti-

tioner, which enables fast indexing with massive border vertices. (3)

Hybrid [9, 18, 20, 25, 60, 104] strikes a balance by combining the two.

Representative heuristics include MDBGP [9] and an application-

driven partitioner [25], designed for VC and GC, respectively.
The conventional partitioners mostly aim to reduce the replica-

tion factor and the balancing ratio. As will be seen in Section 4, these

are not of primary concerns for out-of-core systems; in contrast,

Planar tackles a unique joint partitioning and scheduling problem.

(1) It develops a partitioner by advocating connectivity among sub-

graphs and locality within a subgraph, not the balancing ratio. (2)

It conducts subgraph grouping and scheduling decisions adaptively

at runtime, a mechanism not considered by prior partitioners.

2 PRELIMINARIES
This section reviews basic notations and PRAM algorithms.

Graphs. Assume a countably infinite alphabet Ω for labels. Con-

sider graph𝐺 = (𝑉 , 𝐸, 𝐿), directed or undirected, where𝑉 is a finite

set of vertices; 𝐸 ⊆ 𝑉 × Ω × 𝑉 is a finite set of edges, such that

2

Algorithm 1: Algorithm A forWCC (Shiloach et al. [82]).
Status Declaration: 𝑆𝑉 = {𝑝 } where 𝑝 (𝑣) = 𝑣 for each 𝑣 ∈ 𝑉 ;

Input: Graph𝐺 = (𝑉 , 𝐸, 𝐿) . /*vertex represented by numeric ID. */
Output: The number of weakly connected components in𝐺 .

1 while 𝐸𝑖 not empty do
2 parallel for each 𝑒 = ⟨𝑢, 𝑣⟩ ∈ 𝐸 do Graft(⟨𝑢, 𝑣⟩) ;
3 parallel for each 𝑣 ∈ 𝑉 do PointerJump(𝑣) ;
4 parallel for each 𝑒 = ⟨𝑢, 𝑣⟩ ∈ 𝐸 do Contract(⟨𝑢, 𝑣⟩) ;
5 return the number of distinct values in 𝑝 ;

Procedure Graft (⟨𝑢, 𝑣⟩):
6 if 𝑝 (𝑢) ≠ 𝑝 (𝑣) then
7 swap 𝑢 and 𝑣 if 𝑝 (𝑢) > 𝑝 (𝑣) ; /* ensure 𝑝 (𝑢) ≤ 𝑝 (𝑣) . */
8 𝑝 (𝑝 (𝑣)) := 𝑝 (𝑢) ; /* graft the pseudo-tree of 𝑣 to that of 𝑢. */

Procedure PointerJump (𝑣):
9 repeat 𝑢 := 𝑝 (𝑣) ; 𝑝 (𝑣) := 𝑝 (𝑢) ;

10 until 𝑝 (𝑢) = 𝑢; /* halt if 𝑢 is the root of its pseudo-tree. */
Procedure Contract (⟨𝑢, 𝑣⟩):
11 if 𝑝 (𝑢) = 𝑝 (𝑣) then remove edge ⟨𝑢, 𝑣⟩;

each edge is labeled with a label in Ω; moreover, each vertex 𝑣 in𝑉

carries a label 𝐿(𝑣) ∈ Ω to represent properties.

Partition strategies. Given a graph 𝐺 and a number𝑚, a graph

partitioner P partitions 𝐺 into fragments F = (𝐹1, . . . , 𝐹𝑚) such
that each 𝐹𝑖 = (𝑉𝑖 , 𝐸𝑖 , 𝐿𝑖) is a subgraph of 𝐺 , 𝐸 =

⋃
𝑖∈[1,𝑚] 𝐸𝑖 and

𝑉 =
⋃

𝑖∈[1,𝑚] 𝑉𝑖 . We use 𝐹𝑖 .𝐵 to denote the set of border entities
(vertices and edges) that are shared by at least two subgraphs.

PRAM. PRAM is a theoretical model that simplifies the design and

analysis of parallel algorithms, particularly in a shared-memory

environment. It abstracts the complexities of hardware, assuming

the availability of a large number of processors and unlimited shared

memory. It supports SIMD parallelism: all processors execute the

same instruction concurrently on different pieces of data. A key

feature is that PRAM allows any processor to access any memory

location in constant time, hence the name “random access”.

Decades of research have developed a rich set of PRAM graph

algorithms. Compared to algorithms designed for message-passing

models, they are often provably scalable and more efficient, and

make a better fit to multi-core parallelism with shared memory of a

single machine. For a class Q of graph queries, a PRAM algorithm

A takes as input a query 𝑄 ∈ Q and graph 𝐺 . It is specified by the

following for data, parallelism and computation logic [30, 36, 88].

(1) Status declaration. Given 𝐺 as a set of data arrays for (𝑉 , 𝐸, 𝐿),
algorithm A declares and initializes a set of status variables, which
are auxiliary data structures used by A that represent the interme-

diate states of𝐺 . These include (a) variables associated to individual

graph elements, i.e., a set of vertex (resp. edge) status, denoted by 𝑆𝑉
(resp. 𝑆𝐸), one for each vertex (resp. edge) in 𝐺 ; and (b) variables

that represent the overall state of 𝐺 , i.e., a set 𝑆𝐺 of global status,
which is particularly important for coordinating the overall control

flow, e.g., maintaining counters or flags that influence algorithm

termination. We use 𝑆 (𝐺) to denote tuple (𝑆𝑉 , 𝑆𝐸 , 𝑆𝐺), referred to

as the status of 𝐺 w.r.t. 𝑄 , keeping track of the computation.

(2) Processor allocation. With intermediate state 𝑅(𝐺) = (𝐺, 𝑆 (𝐺))
in shared memory, A conceptually assigns each processor to a

unique memory location (e.g., a vertex or an edge) for SIMD paral-

lelism. The assignment allows any processor to access any part of

𝑅(𝐺) to perform read, compute, or write operations. Note that A
assumes 𝑛 processors where 𝑛 is a polynomial in |𝑉 | and |𝐸 |.
(3) Lockstep. Algorithm A specifies its logic of computation in a

2 3 4 5 6

1

2 3 4 5 6

1

2 3 4 5 6

1

2 3 4 5 6

1

(a) Grafting

(b) Pointer jumping
(c) Contracting

Iteration 1 Iteration 2

Initial root as dashed arrowsG (edge directions hidden)

2 3 4 5 6

1

2 3 4 5 6

1

Figure 1: WCC computation over sample graph𝐺 with Algorithm 1.

sequence of operations for SIMD parallelism, possibly with con-

ditionals and loops. Each operation is called a lockstep, where all
processors execute the same instruction simultaneously on dif-

ferent pieces of data in the shared memory. The synchronization

is enforced by a barrier at the end of each lockstep, ensuring all

processors are ready before proceeding to the next instruction.

The locksteps update 𝑅(𝐺) in place; they produce the final state

𝑅′ (𝐺) = A(𝑄,𝐺) at the end of the sequence, which yield 𝑄 (𝐺).

Example 1: Consider WCC. Given a graph 𝐺 = (𝑉 , 𝐸, 𝐿), it counts
the number of maximum subgraphs of𝐺 in which all vertices are

connected to each other via a path, regardless of the edge direction.

The PRAM algorithm A of [82] is shown Algorithm 1. Using

|𝐸 | + |𝑉 | processors, it computes WCC of 𝐺 in 𝑂 (log |𝑉 |) time. It

maintains a disjoint set of pseudo-trees. A pseudo-tree rooted at

vertex 𝑟 , denoted by Λ(𝑟), is a tree-like structure where each vertex

𝑣 has a parent 𝑝 (𝑣) that points to another vertex inΛ(𝑣), except that
the root 𝑟 is its own parent, i.e., 𝑟 = 𝑝 (𝑟). Algorithm A iteratively

merges these pseudo-trees based on edge connectivity, maintaining

the invariant that all vertices in the same pseudo-tree are weakly

connected. On graph 𝐺 of Figure 1, it works as follows.

(1) Status. AlgorithmA declares a parent pointer 𝑝 (𝑣) for each 𝑣 ∈ 𝑉 ,
initialized to itself and represented as dashed arrows in Figure 1.

The pointers are stored as an array 𝑝 within the vertex status 𝑆𝑉 .

(2) Processors. It virtually allocates a processor to each edge in 𝐸

and each vertex in 𝑉 , allowing all to be processed in parallel.

(3) Locksteps. A maintains and updates parent pointers 𝑝 (𝑣) in a

loop that comprises three lockstep operations. Figure 1 illustrates

changing parent pointers as the red dashed arrows in each lockstep,

and removed edges in light colors. (a) Graft (Line 2). All edges 𝑒 =
⟨𝑢, 𝑣⟩ are checked in parallel. If 𝑢 and 𝑣 belong to different pseudo-

trees Λ(𝑟) and Λ(𝑟 ′), respectively, a merge is performed by grafting

Λ(𝑟) ontoΛ(𝑟 ′), thus forming a larger pseudo-tree. In Figure 1, Itera-

tion 1 of grafting results in two pseudo-trees rooted at 1 and 2, while

Iteration 2 further merges them into one. (b) Pointer jump (Line 3).
The parent pointers for all vertices are updated in parallel. For each

vertex 𝑣 in a pseudo-tree Λ(𝑟), the parent pointer 𝑝 (𝑣) is updated so
that 𝑝 (𝑣) = 𝑟 . This ensures that all vertices in a pseudo-tree point

directly to the root (see Figure 1). (c) Contract (Line 4). All edges
are checked in parallel, to remove ones internal to a pseudo-tree.

Algorithm A continues to iterate through these locksteps until

no edges remain in𝐺 (Line 1). At this point, it returns the number

of distinct pseudo-tree roots asWCC of 𝐺 (Line 5). 2

As shown above, compared to VC/EC programs, PRAM algo-

rithms (1) support beyond-neighborhood direct memory accesses,

not restricting the operations within the neighborhood of each ver-

tex; (2) exploit shared memory for synchronization, not via message

passing; and (3) feature inherent load balancing among processors,

without skewed workloads over power-law graphs [37]. Moreover,

3

Algorithm 2: Planar program forWCC.
Status Declaration: 𝑆𝑉 = {𝑝 } where 𝑝 (𝑣) = 𝑣 for each 𝑣 ∈ 𝑉 ;

StatusAggr: (𝑝 (𝑣), 𝑝′ (𝑣)) ⇒ min{𝑝 (𝑣), 𝑝′ (𝑣) }.
Function PEval (subgraph 𝐹𝑖 = (𝑉𝑖 , 𝐸𝑖 , 𝐿𝑖)) :
1 while 𝐸𝑖 not empty do
2 EApply((∀𝑒 ∈ 𝐸𝑖) ⇒ Graft(𝑒)) ;
3 VApply((∀𝑣 ∈ 𝑉𝑖) ⇒ PointerJump(𝑣)) ;
4 EApply((∀𝑒 ∈ 𝐸𝑖) ⇒ Contract(𝑒)) ;
5 return state 𝑅𝑖 on 𝐹𝑖 ;

Function IncEval (partial result 𝑅𝑖 , updates Ψ[𝐹𝑖]) :
6 VApply((∀𝑣 ∈ Ψ[𝐹𝑖] (𝑝)) ⇒ 𝑝 (𝑝 (𝑣)) := Ψ[𝐹𝑖] (𝑝 (𝑣))) ;
7 VApply((∀𝑣 ∈ 𝑉𝑖) ⇒ PointerJump(𝑣)) ;
8 return updated partial state 𝑅𝑖 ;

Function Assemble (partial results 𝑅1, 𝑅2, . . . , 𝑅𝑚) :
9 return the number of distinct values in 𝑝 ;

unlike VC/EC that may require nontrivial efforts in algorithm de-

velopment, PRAM is backed by a rich set of existing algorithms,

which simplifies both programming and debugging.

3 A PARALLEL COMPUTATION MODEL
This section introduces the parallel model of Planar, including how
to program (Section 3.1) and execute (Section 3.2) a graph algorithm.

We also discuss its benefits over prior parallel models (Section 3.3).

3.1 Programming with Planar
We aim to “plug” existing PRAM algorithms in a single-machine

system. However, this is nontrivial. PRAM assumes (a) unlimited

memory and a unit access cost, and (b) a polynomial number of

cores such that one can process all edges with different cores in

parallel. These are beyond the reach of a real-life machine; e.g.,
when graphs are too large to fit into its memory, we have to use

secondary storage as memory extension; with this comes I/O cost.

To close this gap, we propose a parallel model to make practical

use of PRAM graph algorithms. We (1) decompose out-of-core com-

putation into in-memory tasks; and (2) run a PRAM algorithm on

each in-memory task to leverage multiple cores and shared memory.

This is enabled by a simple, high-level programming abstraction.

For a query class Q, the user needs to provide three functions:

(1) PEval, an existing batch PRAM algorithm that evaluates queries

𝑄 ∈ Q on a subgraph; (2) IncEval, an existing incremental PRAM

algorithm that refines partial results with border updates; and (3)

Assemble, an aggregator for final results. To further simplify pro-

gramming, each of these functions can be implemented using high-

level primitives specialized for PRAM, i.e., concurrent data struc-
tures and PRAM operators. The handling of partitioned graphs and

synchronization is mostly hidden from users; the only addition is

the definition of functions to resolve conflicts in border updates.

PEval. Batch function PEval takes as input a query 𝑄 ∈ Q and

a subgraph 𝐹𝑖 of 𝐺 (𝑖 ∈ [1,𝑚]); it computes the partial result

𝑄 (𝐹𝑖) at state 𝑅𝑖 = A(𝑄, 𝐹𝑖) on 𝐹𝑖 by PRAM algorithm A. More

specifically, PEval initializes partial status 𝑆 (𝐹𝑖) = (𝑆𝑉𝑖 , 𝑆𝐸𝑖 , 𝑆𝐺),
where 𝑆𝑉𝑖 (resp. 𝑆𝐸𝑖) is the status variables associated with vertices

(resp. edges) in 𝐹𝑖 . The partial evaluation process evaluates 𝑄 over

𝐹𝑖 ; it returns updated status 𝑆 (𝐹𝑖) as part of state 𝑅𝑖 , keeping track

of the computation. It also extracts round updates, which consist of

changes to the border vertices/edges and their status. As PEval con-
cludes on subgraph 𝐹𝑖 , round updates are aggregated into a global

cache Ψ, which resolves the conflicting updates to border entities.

PEval may implement an existing batch PRAM algorithm A for

Q. One only needs to extend it with the following.

F1 F2

5 6

1

2 3 4 5
Partitioning of G

PEval
Grafting (Line 2)

Pointer jumping (Line 3)
Contracting (Line 4)

2 3 4 5

2 3 4 5

5 6
1

5 6
1

p(5) = 2Update p(5) = 1

IncEval
Incorporate update (Line 1) 5 6

1

∅Update

2 3 4 5
1

2 3 4 5
1

5 6
1

Pointer jumping (Line 2)

∅
Figure 2: WCC computation over partitioned𝐺 with Planar.

(1) Declare status in A. Function PEval declares the status 𝑆 (𝐺) of
𝐺 , by making use of concurrent data types. Status 𝑆 (𝐺) includes
◦ vertex status 𝑆𝑉 (resp. edge status 𝑆𝐸) in an array of length |𝑉 |

(resp. |𝐸 |), indexed by vertex (resp. edge) identifiers; and

◦ global status 𝑆𝐺 as variables that are globally accessible.

Given subgraph 𝐹𝑖 , PEval initializes partial status 𝑆 (𝐹𝑖) = (𝑆𝑉𝑖 ,
𝑆𝐸𝑖 , 𝑆𝐺), where 𝑆𝑉𝑖 (resp. 𝑆𝐸𝑖) is the subset of variables in 𝑆𝑉 (resp.

𝑆𝐸) that are associated with vertices/edges in 𝐹𝑖 . It maintains the

partial state 𝑅𝑖 = (𝐹𝑖 , 𝑆 (𝐹𝑖)), which is persisted onto secondary

storage upon task completion to keep track of the computation.

(2) Specify aggregators. PEval on different subgraphsmaymake con-

flicting updates to status variables of border entities. To resolve the

conflicts, PEval specifies two aggregation functions: (a) StatusAggr
for status variables, and (b)MutateAggr for edge mutations. At the

end of PEval, Planar aggregates border updates by applying both.

(3) Implement function body. Function PEval is essentially PRAM

algorithm A. It applies a sequence of synchronized parallel opera-

tions over 𝐹𝑖 and initial status 𝑆 (𝐹𝑖) to produce state𝑅𝑖 , where direct
and concurrent memory accesses are granted for each operation.

The lockstep operations of A are directly streamlined as if users

were programming sequentially, using PRAM operators:

(a) VApply(𝑓𝑉): vertex parallel operator, which applies a function

𝑓𝑉 to a set of vertices in parallel. Here 𝑓𝑉 is the procedure of A
for processing each vertex 𝑣 . It can access any variables relevant

to 𝑣 in partial status 𝑆 (𝐹𝑖), and may mutate the graph (see below).

(b) EApply(𝑓𝐸): edge parallel operator, similar to VApply.

Both parallel operators are synchronized; we place an implicit

synchronization barrier after each invocation ofVApply and EApply.
Within each parallel operator, all reads to 𝑅𝑖 precede any write.

To support PRAM algorithms that transform the topological

structure, functions 𝑓𝑉 and 𝑓𝐸 may invoke an additional primitive:

(c) Mutate(𝑒, 𝑒′): replace an existing edge 𝑒 with a new edge 𝑒′.

Example 2: Now we show the PEval program for A of Example 1.

As shown in Algorithm 2, PEval (1) declares status along the same

lines; (2) defines a StatusAggr function for 𝑆𝑉 ; and (3) implements

the three locksteps using VApply and EApply (Lines 1–4).

Figure 2 depicts the execution of PEval over 𝐺 . Assume that 𝐺

is partitioned into subgraphs 𝐹1 and 𝐹2 via vertex-cut (by “cutting”

through vertex 𝑣5), such that either can be processed completely

in memory. Planar first processes 𝐹1, produces a single pseudo-

tree rooted at 𝑣2, and generates an update in a set Ψ indicating

𝑣5’s parent to be 𝑣2; it then processes 𝐹2 along the same line, and

aggregates updates to 𝑝 (𝑣5) by taking the minimum. It finishes

with Ψ = {𝑝Ψ (𝑣5) : 𝑣1} and subgraphs as pseudo-trees of height 1

(indicated by 𝑝); function IncEval will later take these as input. 2
4

IncEval. The incremental function takes as input query𝑄 , subgraph

𝐹𝑖 , stale partial state 𝑅𝑖 and relevant subset Ψ[𝐹𝑖] of updates. It
updates the partial state incrementally in-place via 𝑅𝑖 = A(𝑄, 𝑅𝑖 ⊕
Ψ[𝐹𝑖]), where 𝑅𝑖 ⊕ Ψ[𝐹𝑖] denotes integration of Ψ[𝐹𝑖] with 𝑅𝑖 ; it
adopts incremental evaluation so as to make maximum reuse of the

last-round computation. In the end, Planar resets stale values in Ψ
to a clean slate for the next round of IncEval execution.

Function IncEval implements an incremental PRAM algorithm

AΔ for query class Q, sharing the status declaration and aggrega-

tors of PEval. We may deduce AΔ from A following [28] such that

AΔ guarantees correctness and minimal incrementalization cost.

Example 3: Continuing with Example 2, IncEval implements an

incrementalized A for Planar, where each subgraph in the partial

results of the last round consists of only a set of pseudo-trees with

height 1. As shown in Algorithm 2, IncEval works on 𝐹𝑖 as follows:
(1) it incorporates aggregated updates in Ψ[𝐹𝑖] in parallel, such that

for each border vertex 𝑣 in 𝐹𝑖 , its aggregated status update 𝑝Ψ (𝑣)
overrides 𝑝 (𝑝 (𝑣)), the parent of 𝑣 ’s parent (Line 6); and (2) it con-

ducts another round of parallel pointer jumping (Line 7), such that

the resulting subgraphs remain a set of pseudo-trees with height 1.

Figure 2 also illustrates the execution of IncEval. Working over

𝐹1, update {𝑝Ψ (𝑣5) : 𝑣1} sets 𝑝 (𝑣2) = 𝑣1; vertex 𝑣1 then becomes a

border vertex shared by 𝐹1 and 𝐹2. Then, pointer jumping changes

the parent of all vertices in 𝐹1 to 𝑣1. IncEval generates no further

update to 𝑆𝑉 ; thus, it triggers Assemble upon completion. 2

Assemble takes partial state 𝑅𝑖 (𝑖 ∈ [1,𝑚]) and partitions F as

input, and combines 𝑅𝑖 to get the final answer 𝑄 (𝐺). It is triggered
when IncEval makes changes to neither 𝐹𝑖 nor 𝑆 (𝐹𝑖) (𝑖 ∈ [1,𝑚]).
Example 4: Assemble in Algorithm 2 simply counts distinct roots

of all pseudo-trees in 𝑝 , following Line 5 of Algorithm 1. 2

3.2 Parallel Model
Given a query𝑄 ∈ Q and a graph𝐺 , the parallel model coordinates

the execution of PEval, IncEval and Assemble, no matter whether

the computation fits into the memory of a single machine or not.

Out-of-core computation. If graph 𝐺 exceeds the memory capacity,

Planar partitions 𝐺 into 𝑚 subgraphs F = (𝐹1, 𝐹2, . . . , 𝐹𝑚) such
that each 𝐹𝑖 and its status 𝑆 (𝐹𝑖), are small enough to be processed

in-memory. While Planar may use any graph partitioners P [8, 15,

25, 37, 49, 53], we will develop an “optimal” one in Section 4.

Planar executes algorithmA by decomposing computation over

large 𝐺 into manageable, in-memory PRAM tasks over subgraphs

in F . The tasks are organized in iterative rounds, synchronizing

via the shared memory. Each PRAM task is executed one at a time

without overlapping computation with others, using all available

CPU cores at once. Following the principle of GC [29], the process

of task decomposition and synchronization is made transparent.

In-memory computation. This is a special case under the parallel

model. When 𝐺 and its status 𝑆 (𝐺) for A fit entirely into memory,

Planar can work with partition F = (𝐺) directly. It has a single
PRAM task, by simulating A over 𝐺 with all available cores.

Task decomposition. For out-of-core computation, Planar decom-

poses it into in-memory PRAM tasks over subgraphs, as follows.

Iterative evaluation. Given a query𝑄 ∈ Q, Planar works iteratively
towards query result 𝑄 (𝐺), carrying out computation over each

subgraph. To simplify the discussion, we adopt the BSP model [87],

which separates computation in supersteps (rounds). A round starts

with each subgraph being evaluated locally, and concludes with a

global synchronization step, where border updates of all subgraphs

are aggregated. For 𝑡 ≥ 1, a new round 𝑡 +1 cannot start until round

𝑡 has completed; the updates generated in round 𝑡 are accessible

only in round 𝑡 + 1. This ensures that the computation across the

entire graph stays synchronized until a fixpoint is reached.

The iterative process has three phases: partial evaluation (PEval),
incremental computation (IncEval), and termination (Assemble).
Each phase takes a different PRAM function, as follows.

(1) Partial evaluation. The first round computes partial result 𝑄 (𝐹𝑖)
for each subgraph 𝐹𝑖 ∈ F by executing function PEval in parallel

using all available cores. It also extracts round updates, which consist
of changes to the border vertices/edges and their status.

(2) Incremental computation. Starting from the second round, Planar
iteratively carries out one or more incremental evaluation rounds

over each subgraph 𝐹𝑖 ∈ F , by IncEval. Intuitively, an IncEval
round maintains the partial result at each subgraph, by refining it

incrementally in response to border updates of the last round.

(3) Termination. If an IncEval round ends up with no change to sta-

tus variables, Planar triggers function Assemble, which aggregates

partial results of all subgraphs and returns query answer 𝑄 (𝐺).
Each round. In each round, Planar iterates through all subgraphs

and executes one of the three functions, with all available cores.

It processes one subgraph in memory at a time without overlap-

ping computations of multiple subgraphs, by executing PRAM on a

physical machine with 𝑝 cores with a size-𝑝 thread pool. That is, a

round involves (at most)𝑚 “independent” tasks to cope with limited

memory and CPU cores. Moreover, Planar loads and processes each
subgraph together with its associated status, overlapping computa-

tion with I/O to improve CPU and I/O bandwidth utilization. With

a subgraph under processing, it preloads the next into memory for

buffering and persists the previous one (with the partial state) onto

disk (see [2] for more details). This effectively creates a checkpoint

for the computation, providing some resilience for failure recovery.

Fixpoint. The out-of-core execution of Planar can be modeled as a

fixpoint computation over partition (𝐹1, 𝐹2, . . . , 𝐹𝑚) of 𝐺 :
𝑅0

𝑖
= (𝐹 0

𝑖
, 𝑆 (𝐹 0

𝑖
)) = PEval(𝑄, 𝐹 0

𝑖
),

𝑅𝑡+1

𝑖
= (𝐹 𝑡+1

𝑖
, 𝑆 (𝐹 𝑡+1

𝑖
)) = IncEval(𝑄, 𝑅𝑡

𝑖
⊕ Δ𝑆 (𝐹 𝑡

𝑖
)).

For 𝑖 ∈ [1,𝑚], 𝑡 denotes a round; 𝐹 0

𝑖
is subgraph 𝐹𝑖 ; 𝐹

𝑡
𝑖
is subgraph 𝐹𝑖

at the end of round 𝑡 with status 𝑆 (𝐹 𝑡+1

𝑖
); 𝑅𝑡

𝑖
denotes partial results

from 𝐹 𝑡
𝑖
in round 𝑡 ; and Δ𝑆 (𝐹 𝑡

𝑖
) denotes status updates to 𝐹𝑖 gen-

erated in round 𝑡 . The process iterates until it reaches round 𝑡 such

that 𝑅𝑡+1

𝑖
= 𝑅𝑡

𝑖
for all 𝑖∈[1,𝑚]. At this point, Assemble(𝑅𝑡

1
, . . . , 𝑅𝑡𝑚)

computes and returns 𝑄 (𝐺). The fixpoint computation starts with

PEval and takes IncEval as its intermediate consequence operator.

Similar to the proof of [29], one can verify that Planar supports
all graph computations, which are covered by PRAM. Moreover,

we show that the fixpoint computation guarantees to converge

at 𝑄 (𝐺) if (a) PEval and IncEval are contracting, i.e., the values

of all status variables are from a finite active domain and updated

monotonically following a partial order in each round; and (b) PEval,
IncEval and Assemble are correct PRAM algorithms, i.e., at round
𝑡 + 1 when partial state 𝑅𝑡+1

𝑖
= 𝑅𝑡

𝑖
for all 𝑖∈[1,𝑚], Assemble over

5

𝑅𝑡
1
, . . . , 𝑅𝑡𝑚 produces 𝑄 (𝐺) deterministically. Intuitively, the former

ensures the termination of the fixpoint computation, while the latter

warrants the correctness of the final result. An assurance theorem

and proof are deferred to [2]. It extends [29] by supporting multi-

core parallelism for each in-memory subgraph via SIMD of PRAM.

3.3 Planar vs. VC/EC and GC
Taking WCC as an example, we compare the parallel model

of Planar with prior models. We also develop Planar programs

for SSSP, PR, Coloring, MST and RW; each implements a well-

established prior PRAM algorithm for the query class, preserving

the correctness and efficiency while requiring little modification.

Their analyses are consistent (deferred to [2] for the lack of space).

Parallel scalability. We adapt the parallel scalability of [56] to

characterize the effectiveness of parallel algorithms. Consider a se-

quential algorithmA′
for a query classQ, which takes 𝑡A′ (|𝑄 |, |𝐺 |)

time to answer a query𝑄 ∈ Q over graph𝐺 ; and a parallel algorithm

A that takes 𝑡A (|𝑄 |, |𝐺 |, 𝑝) time using 𝑝 cores. The speedup of A
over sequential A′

is 𝑠 (|𝑄 |, |𝐺 |, 𝑝) = 𝑡A′ (|𝑄 |, |𝐺 |)/𝑡A (|𝑄 |, |𝐺 |, 𝑝).
We say that A is parallelly scalable relative to A′

if for any 𝑄

and 𝐺 , 𝑠 (|𝑄 |, |𝐺 |, 𝑝)/𝑝 ≥ 𝜖 for some constant 𝜖 > 0. Intuitively, it

guarantees speedup ofA relative to a “yardstick” sequentialA′
. In

principle, such A is able to reduce the cost of A′
with more cores.

Comparison with VC/EC. We start with VC/EC.

Example 5:A commonVC/EC algorithm forWCC is HashMin [96].

Given graph 𝐺 = (𝑉 , 𝐸), it assigns each vertex a unique ID, and

propagates the lowest ID across each connected component via

iterative message passing through edges. It takes 𝑂 ((|𝑉 | + |𝐸 |)𝐷)
time when 𝐺 fits in memory, where 𝐷 denotes the diameter of 𝐺 .

In contrast, Planar does𝑂 ((|𝑉 | + |𝐸 |) log𝐷) amount of work [82]

(see Examples 2–4). This is because A shrinks 𝐷 by half after each

round via topological mutations, reducing message propagation.

Neither A nor HashMin is parallelly scalable relative to sequential

BFS, as both incur polylog amount of redundant work. This said,

Planar guarantees linear speedup for up to |𝑉 | + |𝐸 | cores [82], but
VC does not due to contention over high-degree “hubs” nodes.

For large𝐺 with partition F = (𝐹1, . . . , 𝐹𝑚), Planar takes at most

⌈log min{𝑚,𝐷}⌉ rounds, with beyond-neighborhood computation

of GC and contracting subgraphs. In contrast, HashMin takes 𝐷

rounds in the worst case, incurring much more I/O. 2

Benefits. The parallel model of Planar makes a better fit to single-

machine graph processing than VC/EC, as demonstrated by Exam-

ple 5 and analyses with other common graph algorithms [2].

For in-memory workloads, Planarmay do less work than VC/EC
by taking a more efficient PRAM algorithm A; moreover, if A has

proven parallelly scalable, Planar retains the property. In contrast,

VC/EC does not guarantee this due to the complexity of message

passing: it aggregates messages at all vertices, where high-degree

“hubs” become inevitable stragglers and reduce parallel speedup.

Moreover, Planar supports direct beyond-neighborhood data

accesses, flexible control flows to skip unnecessary computation,

and graph topology mutations. These reduce redundant disk I/O.

Comparison with GC. Designed for multi-machine systems,

GC [29] itself is not a good fit for a single-machine system, be-

cause it (a) does not support intra-subgraph parallelism and (b)

requires expensive message passing for synchronization. As re-

marked in Section 1, the parallel model of Planar extends GC to

a shared-memory multi-core architecture by supporting (1) SIMD

intra-subgraph parallelism, (2) out-of-core computation and (3)

memory-based synchronization and graph partitioning/scheduling.

4 PARTITIONING AND SCHEDULING
This section develops a graph partitioning and scheduling strategy

for Planar. We start with unique challenges introduced by single-

machine systems (Section 4.1). We then formalize partitioning and

scheduling as an optimization problem and show its intractability

(Section 4.2), followed by our strategy for the problem (Section 4.3).

We focus on out-of-core Planar computations in this section.

4.1 Challenges
To process a graph 𝐺 that exceeds the memory capacity of a single

machine, Planar partitions 𝐺 into a set F of subgraphs. Most con-

ventional partitioning strategies are designed for multi-machine

systems. They strive to minimize the replication factor and bal-

ancing ratio [18, 25, 29, 37, 66], reducing the communication cost,

redundant work and stragglers. On the contrary, Planar synchro-
nizes via the shared memory for which the communication cost is

negligible; moreover, it serializes subgraph processing such that

workload skewness can hardly slow down computation. This said,

single-machine systems introduce the following unique challenges.

Dynamic behavior. The runtime behavior of a Planar program may

vary substantially across rounds. Recall that a PEval round loads

each subgraph 𝐹𝑖 from disk, executes PRAM algorithm A and pro-

duces the partial state𝑅𝑖 ; an IncEval round reads𝑅𝑖 of the last round,
runs incremental AΔ, updates 𝑅𝑖 and persists it on disk. For CPU

computation, IncEval executes an algorithm different from PEval,
whose cost depends heavily on the border updates from the last

round. For I/O, IncEval loads partial result 𝑅𝑖 , whose size depends
on the mutated topological structure of 𝐹𝑖 . Moreover, the runtime

may change substantially in different IncEval rounds. Given this,

how should we partition graph 𝐺 for the best performance?

In contrast, this is not an issue for multi-machine systems.

Scheduling for CPU- vs. I/O-bound computation. Planar works out-
of-core by repeatedly swapping subgraphs in and out of memory,

and incurs disk I/O throughout the program execution. More specif-

ically, a round of execution can be CPU-bound or I/O-bound. It

is CPU-bound if its total computational cost over all subgraphs is

higher than the total I/O cost; in this case, we should prevent I/O op-

erations from blocking computation. Otherwise, it is an I/O-bound
round, i.e., the I/O dominates the execution cost, for which we

should maximize the I/O bandwidth utilization. Both cases require

that we schedule the subgraph processing to maximally overlap

the CPU and I/O operations, whichever the bottleneck is.

Scheduling is not an issue for a multi-machine system, which (1)

amortizes the I/O cost by loading each subgraph just once; and (2)

processes all subgraphs at the same time with different machines.

Granularity. On the one hand, subgraphs should be large enough

to improve locality, reduce synchronization and redundant compu-

tation. On the other hand, too large subgraphs could take too much

memory for computation, leaving little buffering space for over-

lapped I/O operations. Canwe strike a balance in granularity to min-

6

imize overhead under the constraint of limited memory capacity?

This tradeoff is not studied by prior partitioners, since multi-

machine systems assume sufficient memory for each worker and

partition the graph based on the number of available machines.

These challenges demand a joint optimization effort in both

partitioning and scheduling, taking into account the overlapping

of CPU and I/O operations as well as the memory constraint.

4.2 Partitioning and Scheduling Problem
Based on a general cost model for a Planar program, we formalize

the partitioning and scheduling problem and show its intractability.

Cost model. Consider a partition F of 𝐺 . We formulate the round

cost in terms of the computational and I/O costs for each 𝐹𝑖 .

Round cost. For round 𝑗 , denote by 𝐶A 𝑗
(𝐹𝑖 , 𝑝) the computational

cost over 𝐹𝑖 using 𝑝 processors, and by IO(𝐹𝑖) the I/O cost, which

is proportional to the size of the partial state 𝑅𝑖 , Assuming that

Planar processes subgraphs F = (𝐹1, . . . , 𝐹𝑚) in order and overlaps

CPU and I/O whenever possible, the round cost is

𝐶 𝑗 (F)= IO(𝐹1)+Σ𝑚𝑖=2
max{IO(𝐹𝑖),𝐶A 𝑗

(𝐹𝑖−1, 𝑝)}+𝐶A 𝑗
(𝐹𝑚, 𝑝). (1)

Intuitively, this model accounts for the sequential processing of

subgraphs and the overlapping of I/O and computation in a pipeline.

While Planar computes on the current subgraph, it simultaneously

loads the next one; the longer duration between the two determines

the subgraph cost. The round cost is thus the sum of all subgraphs.

Peak memory usage. When processing the partial state 𝑅𝑖 of sub-

graph 𝐹𝑖 at runtime, let 𝑀A (𝐹𝑖) denote its peak memory usage.

This can be estimated as a function𝑀A (𝐹𝑖) = 𝜇A (|𝑅𝑖 |), where 𝜇A
is determined by the space complexity of algorithm A.

Profiling. Once a Planar program is compiled, we feed in some

graphs as profiling tests, to (1) train a binary classification profiler

to determine qualitatively whether the PEval round is CPU- or I/O-

bound on the given machine; and (2) train function 𝜇A (|𝑅𝑖 |) as a
regression model. The training samples include runtime parameters

e.g., subgraph sizes, degree skewness, and border updates.

The test inputs are small in size, of the same type as the real

input. In our experiments we used 4 graphs from 0.14–30.14GB in

size, and the entire profiling procedure takes 96s. The profiler can

accurately predict the bottleneck in >95% cases.

Problem statement. Consider a Planar program A. Given input

graph 𝐺 , 𝑝 cores and memory capacity 𝐵, we formulate the joint

partitioning and scheduling problem as an optimization problem

to find a partition F = (𝐹1, . . . , 𝐹𝑚) of 𝐺 , such that if subgraphs

are processed in order, the round cost is minimized and memory

capacity 𝐵 is never exhausted during execution. The objective is

arg minF 𝐶 𝑗 (F),
subject to 𝑀A (𝐹𝑖) +𝑀A (𝐹𝑖+1) ≤ 𝐵, 𝑖 ∈ [1,𝑚 − 1] .

Its decision problem, denoted byDPSP, is to decide, given Planar
program A, graph𝐺 , integer𝑚, memory bound 𝐵, and cost thresh-

old 𝜂, whether there exists a valid partition F of 𝐺 such that if

subgraphs are processed in order, the round cost is at most 𝜂.

Theorem 1: DPSP is NP-hard. 2

Proof sketch: We show that DPSP is NP-hard for both I/O-bound

and CPU-bound A (see [2]), by reduction from the NP-complete

3-partition problem (cf. [32]). Given a set 𝐴 of positive integers, we

construct a graph 𝐺 , an integer𝑚, two positive numbers 𝐵 and 𝜂,

algorithm A (with memory usage𝑀𝐴 (𝐹𝑖) and round cost 𝐶 𝑗 (F)),
such that the set𝐴 can be partitioned into disjoint subsets𝐴1, 𝐴2 and

𝐴3 of equal sum iff there exists a partition F of𝐺 with𝑚 subgraphs

that meets both the memory bound 𝐵 and the cost threshold 𝜂. 2

4.3 Partitioning and Scheduling Strategies
Theorem 1 suggests that even with accurate cost estimations, an op-

timal partitioning and scheduling strategy still remains intractable.

Hence, we seek an efficient heuristic method that intuitively opti-

mizes performance based on observed workload characteristics.

Overview. We adopt a joint partitioning and scheduling strategy.

The idea is to (1) partition𝐺 speculatively into small “blocks” during

preprocessing, (2) group blocks into subgraphs that fit in memory

at runtime, and (3) schedule adaptively based on the bottleneck. In

other words, by processing graphs in manageable blocks, Planar
efficiently adjusts partitioning/scheduling based on real-time mea-

surements, circumventing the need for precise cost estimations.

At preprocessing, Planar decomposes𝐺 into a collection of small

blocks, to reduce the runtime decision space and the complexity of

grouping. It uses a new locality-aware branching technique, which

is optimized for connectivity among blocks and locality within each

block. Intuitively, both metrics benefit subgraph-based processing

by facilitating update propagation and reducing border status.

To group blocks at runtime, Planar follows the principle of a state-
of-the-art partitioner tominimize the replication factor. It boosts the

locality within each grouped subgraph by reducing border entities.

As opposed to working with “static” subgraphs, Planar (1) makes

block grouping decisions adaptively at runtime to cope with its

dynamic behavior; (2) adopts different scheduling strategies for

CPU- and I/O-bound rounds to accommodate the bottleneck; and

(3) adjusts granularity based on runtime memory usage and strikes

a balance between the “on-stage” and “off-stage” working memory.

Speculative partitioning. We first develop a speculative parti-

tioner that produces small blocks F of𝐺 . To simplify the discussion,

we adopt vertex-cut; it can be adapted to edge-cut or hybrid.

Motivation. Based on Equation 1, we identify key design objectives:

◦ Connectivity among subgraphs. Stronger connectivity boosts up-

date propagation across the entire graph, which leads to faster

convergence and fewer rounds in fixpoint computation.

◦ Locality within a subgraph. Better locality can (a) reduce the total
size of partial states and hence the I/O cost; and (b) lower the

IncEval round complexity. This is in principle consistent with

minimizing the replication factor for multi-machine partitioners.

To these ends, we develop a two-stage partitioning algorithm.

In the first stage, we model the connectivity among blocks by in-

troducing a notion of dependency graph DG. We propose a branch
decomposition technique, which produces a collection F of blocks

and minimizes the diameter of DG(F). The second stage performs

greedy adjustment, which refines blocks by redistributing edges at

the border and merges blocks that are too small in size.

Dependency graph models the connectivity among blocks (sub-

graphs). Such a graphw.r.t. F = (𝐹1, . . . , 𝐹𝑚) is an undirected graph
DG(F) = (𝑉DG, 𝐸DG, 𝐿DG). It has𝑚 vertices, where 𝑣𝑖 ∈ 𝑉DG de-

notes 𝐹𝑖 for each 𝑖 ∈ [1,𝑚]. An edge 𝑒𝑖 𝑗 exists between 𝑣𝑖 and 𝑣 𝑗

7

(b) Partition F1 and its dependency graph. D(F1) = 3.

DG 0,4,5
6,9

6,7
8,9

0,1
3,4

2 2

(c) Partition F2 and its dependency graph, D(F2) = 1. Containing branches Λ of G at root 0.

DG 0,6
8,9

0,5
6,7

0,4
52 22

7 6 5 4 3

098 19

6

2

3

0 1

4
1,2
3

2

0,2
3,4

0,1
22

1

1

1
1 1

1

(a) Graph G.

0 2

7 6 5 4 3

98 1

2

10

6

09

8

7

5

0

6 45

0

2

0

34
B1 B2 B4B3 B5

Figure 3: Partitions, branches and dependency graphs.

if 𝐹𝑖 and 𝐹 𝑗 share some entities; its weight 𝐿DG (𝑒𝑖 𝑗) denotes the
number of shared entities. We will see how𝑚 is determined shortly.

Denote by 𝐷 (F) the diameter of DG(F). Intuitively, the smaller

𝐷 (F) is, the stronger the connectivity is. It takes fewer steps to

propagate an update throughout a small-diameter graph, benefiting

label-setting algorithms [50], e.g., WCC, SSSP and Coloring.

Example 6: Figures 3b and 3c show two ways of partitioning graph

𝐺 (Figure 3a). Partition F1 has a dependency graph whose diameter

is 3; F2 has 𝐷 (F2) = 1 despite that it has 1 more subgraph. 2

(1) Branch decomposition employs a greedy algorithm, denoted by

Decompose. It produces an arbitrary number of blocks. The idea is

to cut the graph through a high-degree vertex 𝑟 , boost the connec-

tivity and minimize 𝐷 (F). It puts a few high-degree vertices on the

border, and strives to keep others within a block. We will further

reduce border entities via greedy adjustment and block grouping.

Consider w.l.o.g. connected𝐺 = (𝑉 , 𝐸). As shown in Algorithm 3,

after finding the highest-degree root vertex 𝑣𝑟 in 𝑉 , Decompose
breaks 𝑉 \ {𝑣𝑟 } into a disjoint set Λ of branches with procedure

SortBFSBranch (line 2). A branch 𝜆 in Λ is a set of vertices on the

same branch in a BFS tree rooted at 𝑣 , and can thus be reconstructed
into a block via procedure Expand, by adding edges that are incident
to its vertices. BFS traversal balances the height of each branch;

this limits the diameter of each expanded block and reduces within-

subgraph computation. The algorithm recurses if the expanded sub-

graph of a branch is too large to make a valid partition (lines 3–4).

Example 7: Continuing with Example 6, Decompose breaks𝐺 into

five branches (Figure 3c). The edges in light color connect separate

branches; they may be subject to adjustment later. 2

(2) Greedy adjustment. We next adjust F by (a) redistributing bor-

der entities, and (b) merging blocks that are too small in size. It

produces blocks whose number𝑚 is arbitrary yet more manageable.

With redistribution, our goal is to reduce border entities. More

specifically, we find each edge 𝑒 incident to a non-root border vertex

𝑣 , and migrate 𝑒 to another block with 𝑣 tentatively. The changes

are materialized if the total border entities are reduced.

Merging aims to (a) limit the number of blocks in F to reduce the

complexity of grouping, and (b) avoid small, scattered I/O requests

and improve disk bandwidth utilization. We will merge blocks

whose estimated memory usage is below a threshold. The threshold

is decided based on the storage type; by default over a SATA SSD,

we set it to 256MB for full disk bandwidth utilization [85].

Remark. Speculative partitioning introduces a one-time prepro-

cessing cost, higher than hash-based e.g.,VCut [98] and ECut [61].
Nevertheless, as we will show in Section 5, the cost can be amor-

tized over a few rounds of computation. Moreover, we implement

incremental partitioning [27] to cope with dynamic graphs.

Block grouping. Consider a speculative partition F . Grouping

selects a set of pending blocks in F at runtime and processes them

Algorithm 3: Function Decompose.
Input: A connected graph𝐺 , memory budget 𝜏 .

Output: Vertex-cut subgraphs F of𝐺 .

1 if 𝑀A (𝐺) ≤ 𝐵 then return {𝐺 }; else init F := ∅;
2 find max-degree vertex 𝑣𝑟 in𝐺 ; Λ := SortBFSBranch(𝐺, 𝑣𝑟) ;
3 while Λ has non-empty head 𝜆 and𝑀A (Expand(𝜆)) > 𝜏 do
4 F := F ∪ BranchGroup(Expand(𝜆)) ; remove 𝜆 from Λ;

5 return F;
Procedure Expand (𝜆):
6 return 𝐹 = (𝑉 (𝜆), 𝐸𝐹) , where 𝐸𝐹 = {𝑒 ∈ 𝐺 | 𝑒.src ∈ 𝑉 (𝜆) };
Procedure SortBFSBranch (𝐺 , 𝑣):
7 tree𝑇 := BFS(𝐺, 𝑣) ; get𝑇 ’s branches Λ := {𝜆1, . . . , 𝜆 |𝑁 (𝑣) | };
8 return sorted Λ, decreasingly in𝑀A (Expand(𝜆)), ∀𝜆 ∈ Λ;

as a single subgraph. Given a memory budget 𝜏 , we aim to find a

grouping that (1) promotes locality within a group, and (2) requires

memory usage at most 𝜏 . Note that the groupings are temporary;

each subgraph is still persisted as a separate file after computation.

At a high level, this is equivalent to partitioning the dependency

graph DG(F) via edge-cut, so as to minimize the total weight of

border edges. To this end, we propose an algorithm calledGrouping.
It adapts the neighbor expansion heuristic of [98] to weighted de-

pendency graphs, which guarantees an optimal replication factor.

More specifically,Grouping selects a set 𝐹 of blocks, startingwith
a random vertex 𝑣1 inDG(F). It works iteratively until the memory

budget 𝜏 is exhausted; each iteration adds one block (i.e., a vertex
in DG(F)) to 𝐹 . In the 𝑖-th iteration, it finds 𝑣𝑖 greedily based on

𝑣𝑖 = arg max

𝑣∈F\𝐹
Σ𝑖−1

𝑗=1
𝐿DG (⟨𝑣, 𝑣 𝑗 ⟩). (2)

Intuitively, Grouping greedily adds blocks to 𝐹 , to maximally hide

border entities inside a group as “internal” entities. It is efficient.

In our experiments over large graph clueWeb (see Table 1), F has

328 blocks, and each grouping iteration takes a negligible ≤30 ms.

Example 8: Suppose that Planar takes 5-block F2 (Figure 3c) as

input, with a memory budget 𝜏 of two blocks. If we start with block

B1, the grouping strategy will group it with B2 and process both as

a single subgraph, since the two share the most border entities. 2

Adaptive scheduling. To overlap CPU and I/O operations, we split

the working memory into the off-stage area for buffering pending

blocks, and the on-stage area for computation. With the strategies

above, one question remains open: how can we balance the split,

by setting a memory budget 𝜏 for off-stage area?

We use different strategies for CPU- and I/O-bound rounds. At

each round, the profiler predicts the upcoming bottleneck utilizing

the statistics of subgraphs and runtime parameters of previous

rounds (if any). This prediction initializes the scheduling strategy,

which is adapted to real-time measurements as the round proceeds.

CPU-bound rounds. The goal is to ensure that I/O operations do not

block CPU computation. Thus, we attempt to keep CPUs busy at

all times, and may allow some gaps in block loading.

To prevent CPUs from starving, we adopt greedy strategies. (1)

With an empty off-stage area, we always load the smallest pending

block. (2) When the current on-stage area concludes computation,

we immediately group all blocks in the off-stage area and move

them to the on-stage area for computation. (3) For the off-stage area,

we reserve an upper bound 𝜏 as half of the memory capacity 𝐵, to

allow sufficient buffering for the next group of blocks. Intuitively, to

improve CPU utilization in early rounds, we start with fine-grained

groupings; to speed up computation, we fine-tune the granularity.

8

Table 1: Graph datasets.
Name Type |𝑉 | |𝐸 | Mean Distance Data Size (GB)

friendster [1] social network 65.6M 1.8B 5.1 28.9

web-sk [77] Web 50M 1.9B 13.7 32.0

datagen [42] synthetic 29M 2.6B 12.5 80.7

clueWeb [77] Web 1.7B 7.9B 65.7 140.6

hyper12 [4] Web 273M 9B 42.8 143.0

Too small 𝜏 often leads to under-utilization of the working memory,

while too large 𝜏 may result in oscillations in grouping sizes.

I/O-bound rounds. Our objective is to ensure computation not to

block I/O. We strive to keep loading from the disk, and may tolerate

idling CPUs. To this end, we attempt to load as many blocks as

possible and process them as a group, until the aggregate memory

usage of the group exceeds budget 𝜏 . In contrast to CPU-bound

rounds, we set 𝜏 dynamically to maximize block grouping and

memory utilization. More specifically, we start with a lower bound
𝜏 = 𝐵/2, and gradually increase 𝜏 as long as the computation in the

on-stage area concludes before the off-stage area is saturated.

Example 9: Continuing with Example 8, suppose that Planar has a
working memory that can hold 4 blocks. If the round is CPU-bound,

it will start computation with the smallest block B5, during which

B3 and B4 will be buffered in the off-stage area and processed with

grouping, so on and so forth. If the round is I/O-bound, it will start

a group of two blocks before commencing computation. 2

5 EXPERIMENTAL STUDY
Using real-life and synthetic graphs, we evaluated Planar for its
(1) efficiency, (2) partitioning and scheduling strategy, (3) (parallel)

scalability, and (4) performance vs. multi-machine systems.

Experimental setting. We start with the setups.

Datasets. We used five real-life and synthetic datasets, as described

in Table 1. All graphs have been widely used in prior work, allowing

us to have a comparison under similar conditions. Among these,

datagen, clueWeb and hyper12 are among the few open-source

graphs that cannot fit in the memory of our main testbed. Here

datagen is a synthesized dataset in the LDBC [42] benchmark

suite; hyper12 is a BFS sample [59] of hyperlink [4]. The two

smaller graphs, friendster and web-sk, are similar in size but

have different distributions; they can reveal interesting insights.

Datasets were formatted and partitioned based on each system’s

requirements; no partitioning is required for in-memory workloads.

To study the impact of graph characteristics on system perfor-

mance, we generated a series of synthetic graphs using gMark [10],

of type bibliography and uniprot. Each graph has 100M vertices, with

an average degree ranging from 5–15, i.e., 0.5B–1.5B edges.

Baselines. We evaluated four out-of-core systems: VC-based
GraphChi [57], EC-based GridGraph [105] and Blaze [52], and

MiniGraph [106] with a hybrid model. We omittedMosaic [65] for
its now-discontinued Intel Xeon Phi coprocessor [70], and CLIP [6]

because it produces inconsistent results for multiple graph queries.

We tested SOTA in-memory systems Galois [72] and Ligra [83]
for (parallel) scalability, and omitted CoroGraph [102] because

it cannot handle graph with >4.3B edges. We also tested GPU

systems Subway [79] and CGGraph [19], FPGA system AccuGraph

[97], and multi-machine systems Gluon [22] and GraphScope [24].

All systems were tested in default configurations.

We also tested four variants of Planar: (1) Planarstatic, which
disables block grouping (see Section 4.3); (2) Planarrand, which

Table 2: Runtime statistics. Each round in Blaze is an EC superstep.
Query Dataset Metric Planar MiniGraph Blaze Planarstatic Planarrand

WCC

web-sk
Time (s) 56.9 237.3 (4.17×) 66.0 (1.16×) 137.8 (2.42×) 67.9(1.19×)
Rounds 2 6 24 10 2

I/O (GB) 7.4 104.0 (14.05×) 28.5 (3.85×) 55.1 (7.45×) 7.4 (1.00×)

friend-
ster

Time (s) 54.7 130.3 (2.38×) 91.0 (1.66×) 142.6 (2.60×) 58.4 (1.07×)
Rounds 2 3 16 3 2

I/O (GB) 7.0 54.5 (7.79×) 27.0 (3.86×) 26.1 (3.73×) 7.0 (1.00×)

SSSP

web-sk
Time (s) 19.2 366.5 (19.09×) 107.7 (5.61×) 156.7 (8.16×) 27.6 (1.44×)
Rounds 2 18 58 17 3

I/O (GB) 11.0 201.1 (18.28×) 40.0 (3.64×) 85.8 (7.80×) 20.0 (1.82×)

friend-
ster

Time (s) 23.1 183.8 (7.96×) 96.8 (4.19×) 99.8 (4.32×) 30.3 (1.31×)
Rounds 2 8 31 8 3

I/O (GB) 7.0 86.0 (12.29×) 36.4 (5.20×) 100.2 (14.31×) 12.0 (1.71×)

groups blocks randomly, not based on the heuristic of Equation 2;

(3) Planarpar, by allowing concurrent subgraphs processing; (4)

Planarpersist, which persists border updates on disks at each round,

and (5) Planarpar+persist, which enables both mechanism (3) and (4).

We evaluated four alternative partitioning strategies (Exp-2): (1)

VCut, a state-of-the-art vertex-cut heuristic [98]. (2) ECut of [61],
the edge-cut used byMiniGraph [106]. (3) 2DVCut, a vertex-cut par-
titioner used byGridGraph [105], Mosaic [65], and GraphScale [21].

(4) 1DVCut, the vertex-cut used by HitGraph [103]. They produce

the same number𝑚 of blocks as our speculative partitioner does.

Algorithms. We evaluated Planar programs forWCC, PR, Coloring,
SSSP,MST and RW (see [2] for implementation details), common

graph queries included in various benchmarks [3, 11]. Among these,

PR and Coloring are representative algorithms cast from VC/EC;
the others have the best known asymptotic complexity for the

query. For baselines, we used their out-of-box implementations

if available. Since GridGraph does not support Coloring or MST
out-of-box, we implemented their VC algorithms [33, 73].

Moreover, we tested various subgraph queries over bibliography,
counting 𝑘-stars (i.e., the number of papers with at least 𝑘 authors)

and 𝑘-hop paths (for paper impact analysis), where 𝑘 ∈ {3, 4, 5}.
For SSSP, we randomly picked 10 vertices and used them as

sources for each input graph. For RW, we initiated a walker at

every vertex; each walker takes a 5-step walk.

We have validated the correctness and consistency of system out-

puts. We present the average of each experiment over 5 repetitions.

We report results over some graphs; the other results are consistent.

Testbeds. Our main testbed is a workstation with a consumer-

grade CPU and limited memory. It is powered by an Intel Core

i9-7900X@3.30GHz CPU, with 13.75MB LLC and 20 cores, and 64GB

of DDR4-2666 memory. The graphs were loaded from a 1TB WD

Blue WDS100T2B0A SATA SSD, which has an average sequential

read throughput of 560MB/s. To further test the parallel scalability

for in-memory workloads (Exp-3), we used an enterprise-grade

server with 512GB of DDR4-2933 memory and 4× Intel Xeon Gold

5320@2.20GHz CPUs, each with 39MB LLC and 26 cores. Unless

noted otherwise, all system were tested with default configurations.

We evaluated GPU systems on our server testbed with an

NVIDIA V100 GPU with 32GB GPU memory. FPGA systems were

evaluated on a Xilinx Alveo U50 card, with 32GB of HBM memory.

Experimental results. We next report our findings.

Exp-1: Efficiency. We first evaluated the efficiency and I/O of

Planar versus out-of-core baselines for various queries. Over two
small graphs, we imposed a 16GBmemory budget using cgroups to
study the out-of-core behavior. Table 2 reports the runtime statistics

of some algorithms compared withMiniGraph and Blaze, the best
9

Table 3: Out-of-core system performance (in seconds). GraphChi could not finish within 5 hours for all queries over clueWeb and hyper12.

Query datagen clueWeb hyper12

Planar MiniGraph Blaze GridGraph GraphChi Planar MiniGraph Blaze GridGraph Planar MiniGraph Blaze GridGraph

WCC 60.9 85.8 (1.41×) 81.6 (1.34×) 104.4 (1.71×) 2688.6 (44.15×) 465.6 4219.4 (9.06×) 670.9 (1.44×) 7755.3 (16.66×) 203.2 7825.0 (38.51×) 340.5 (1.68×) >5h (>88.58×)
SSSP 29.1 42.3 (1.45×) 55.2 (1.90×) 146.7 (5.04×) 2483.4 (85.34×) 229.7 1062.9 (4.63×) 506.8 (2.21×) 1415.9 (6.16×) 91.9 2348.9 (25.56×) 115.1 (1.25×) >5h (>195.87×)
PR 61.0 100.7 (1.65×) 200.6 (3.29×) 185.6 (3.04×) 646.6 (10.60×) 529.3 2131.8 (4.03×) 623.8 (1.18×) 2537.2 (4.79×) 213.6 1175.6 (5.50×) 406.6 (1.90×) 1820.2 (8.52×)

Coloring 153.7 620.9 (4.04×) 190.4 (1.24×) 2105.3 (13.70×) 4381.5 (28.51×) 346.6 1719.1 (4.96×) 576.6 (1.66×) 2238.5 (6.46×) 218.6 15470.5 (70.77×) 346.1 (1.58×) >5h (>82.34×)
MST 71.6 147.2 (2.06×) 84.8 (1.18×) 118.9 (1.66×) 907.7 (12.68×) 390.6 >5h (>46.08×) 958.9 (2.45×) >5h (>46.08×) 252.4 >5h (>71.32×) 407.0 (1.61×) >5h (>71.32×)
RW 19.6 174.1 (8.88×) 99.8 (5.09×) 207.1 (10.57×) 3177.2 (162.10×) 64.0 1941.4 (30.33×) 297.4 (4.65×) 8391.5 (131.12×) 59.6 2067.2 (34.68×) 114.5 (1.92×) >5h (>302.01×)

performing baselines supportingGC and VC/EC, respectively. Over
large graphs, Table 3 reports the performance of all systems.

WCC. From Tables 2–3, we can see the following.

(1) On synthetic datagen (Table-3), Planar beats the four baselines
by 1.34–44.15×. Over real-life clueWeb and hyper12, it outperforms

MiniGraph by 9.06× and 38.51×, Blaze by 1.44× and 1.68× and

GridGraph by 16.66× and >88.58×, respectively, while GraphChi
cannot handle large graphs at this scale. Note that Planar is 2.29×
faster on hyper12 than on clueWeb, a graph with fewer edges, since
hyper12 has much fewer vertices (only 16.1% of clueWeb), allowing
more graph contractions during PEval and faster IncEval rounds.

(2) Over two small graphs, Planar is 2.38–4.17× faster than

MiniGraph, and 1.16–1.66× faster than Blaze (Table 2). Over

web-sk, Planar only takes 2 rounds due to its beyond-neighborhood
computation, and its partitioning strategy that promotes connectiv-

ity and hence reduces computation rounds. In contrast,MiniGraph
and Blaze take 6 and 24 rounds (i.e., supersteps), respectively. De-
spite the difference in the skeweness of two graphs, Planar has a
relative consistent performance; other systems vary greatly.

Here we omit the results of GridGraph and GraphChi; they take
at least 3.06× longer than Planar over various workloads.

(3) Planar substantially reduces I/O. On web-sk and friendster
(Table 2), its disk read is 90.9% and 74.1% less than MiniGraph and

Blaze on average, respectively. Besides taking fewer rounds, Planar
reduces I/O in IncEval rounds (Figure 4a), because (a) it contracts the
graph by removingmost edges in PEval and incurring little disk read
in the following rounds over clueWeb; and (b) it reduces I/O further

by skipping “inactive” subgraphs. This justifies speculative parti-

tioning, in which a small subgraph is more likely to become inactive.

SSSP. As shown in Tables 2–3, Planar outperforms the all four

competitors for SSSP over all graphs. (1) On the two large Web

graphs, it is 4.63–25.56×, 1.25–2.21× and 6.16–195.87× faster than

MiniGraph, Blaze and GridGraph, respectively. It does the job

within 4 min, while GraphChi does not finish in 5 hours. (2) On

the synthetic datagen, it beats the four baselines 1.45×–85.34×. (3)
Planar takes fewer rounds and 91.9% less disk read thanMiniGraph
on friendster, leading to a 7.96× speedup. The I/O reductions are

not as significant as with WCC, since Planar does not contract the
graph during SSSP computation. The speedup is greater (19.09×) on
web-sk. These verify that Planar is more effective on large-diameter

graphs, since its partitioner strives to improve subgraph connec-

tivity. It leads to faster convergence for GC computation; Planar
takes only 2 rounds on both graphs, whileMiniGraph takes 8–18

rounds. (4) Over friendster (resp. web-sk), Blaze generates 5.20×
(resp. 3.64×) of the disk I/O of Planar and takes 4.19× (resp. 5.61×)
longer, even though it leverages on-demand, fine-grained (4KB) I/O

to reduce disk reads. This highlights the effectiveness of beyond-

neighborhood computation in Planar, which substantially reduces

redundant computation, leading to 93.5–96.6% fewer rounds.

PR. For PR over all large graphs, Planar beats the baselines con-
sistently despite that they all execute the same algorithm. As

shown in Table 3, it outperformsMiniGraph,Blaze,GridGraph, and
GraphChi by at least 1.65×, 1.18×, 3.04× and 10.60×, respectively.
This is because Planar maximally overlaps computation and I/O,

optimized for shared-memory, multi-core concurrent data accesses.

Coloring. As shown in Table 3 and Figure 4b, (1) Planar is over 1.24×
faster, takes at least 97% fewer rounds, and generates 51.1% less

disk read, compared to EC/VC-based Blaze and GridGraph. The
improvements stem from its beyond-neighborhood computation,

which reduces redundant coloring fixes. (2) Planar beatsMiniGraph
by ≥ 4.04×, even though they both follow the same principle of GC
and execute the same algorithm. Figure 4b reveals two reasons for

this: (a) Planar takes 69.2% less I/O in the first round, benefiting from

the compact storage format (see Section D); and (b) it reduces more

disk read in later rounds by skipping processing of more blocks.

MST and RW. As shown in Table 3, Planar consistently beats the

four baselines forMST and RW. (1) ForMST, Planar is at least 2.06×,
1.18×, 1.66× and 12.68× faster than MiniGraph, Blaze, GridGraph,
and GraphChi, respectively. This is due mainly to its more efficient

PRAM algorithm, which employs the graph-contraction mutations,

like WCC. (2) For RW, Planar beats the best performing baseline

by 1.92–5.09×, since Planar supports the random walk algorithm

of [46], which is more efficient than that of VC/EC and Hybrid.

Subgraph counting. As shown in Figure 4m over bibliography, Planar
answers all subgraph queries in 10s. For various star-counting

queries, its performance is relatively consistent, beating Blaze by
1.13× on average. For path counting, Planar runs faster over simpler

patterns, as expected. Its speedup over Blaze is 2.10–3.22×.

Exp-2: Ablation study. Next we tested the effectiveness of our

partitioning and scheduling strategy, as well as other design choices.

Varying 𝜏 . We varied the memory 𝜏 reserved for I/O buffering. As

shown in Figure 4c for WCC, setting 𝜏 = 0 or 𝜏 = 𝐵 effectively

disables the overlapping of CPU and I/O operations, causing

substantial slowdown. With 𝜏 = 𝐵/2, Planar performs the best

regardless of the partitioner, hence the V-shape of all lines. This

justifies our adaptive scheduling strategy (Section 4.3).

Impact of partitioners. We tested Planar with different partitioners

on clueWeb. As shown in Figure 4c forWCC with 𝜏 = 𝐵/2, our par-

titioner beats the alternatives consistently. It speeds up VCut, ECut,
2DVCut, 1DVCut by 2.12×, 2.04×, 1.87× and 1.63×, respectively.

On the server testbed, Planar takes 51.9 min for preprocessing,

while the other partitioners take 11.0–16.7 min. This is because

speculative partitioning involves local graph traversals and greedy

adjustments, which are more computationally intensive than the

edge bucketing in other methods. This said, it is an one-time cost

amortized over a few rounds of computation. Taking preprocessing

into account, Planar beatsMiniGraph after answering 1WCC or 2

Coloring queries. This demonstrates that the partitioning strategy

10

0.2 0.6 1.0
0

10000

Ti
m

e
(s

) Planar
MiniGraph

GridGraph Blaze VCut ECut 2DVCut 1DVCut Galois Ligra Gluon GraphScope

1 10 100
Rounds

102

103

I/O
(G

B
)

(a) Accumulated I/O: clueWeb,WCC.

1 10 100
Rounds

102

103

I/O
(G

B
)

(b) Accumulated I/O: clueWeb, Coloring.

0 B/4 B/2 3B/4
τ

1

2

3

S
lo

w
do

w
n

(x
)

(c) Varying 𝜏 : clueWeb,WCC.

5 10 15 20
Cores

400

1000

5000
10000

Ti
m

e
(s

)

(d) Varying 𝑝 : out-of-core,WCC.

5 10 15 20
Cores

300

500

2000

4000

Ti
m

e
(s

)

(e) Varying 𝑝 : out-of-core, Coloring.

0.4 0.6 0.8 1.0
Scale factor

100

1000

10000

Ti
m

e
(s

)

(f) Varying |𝐺 | : out-of-core,WCC.

2000
4000
6000

16 32 48 64 80 96
Cores

50

200

Ti
m

e
(s

)

(g) Varying 𝑝 : in-memory,WCC.

16 32 48 64 80 96
Cores

30

50

100

140

Ti
m

e
(s

)

(h) Varying 𝑝 : in-memory, PR.

16 32 48 64 80 96
Cores

1000

2000

4000

Ti
m

e
(s

)

(i) Varying 𝑝 : in-memory, Coloring.

1000

0.4 0.6 0.8 1.0
Scale factor

50
100

Ti
m

e
(s

)

(j) Varying |𝐺 | : in-memory,WCC.

2 4 6 8 10
Nodes

0

200

400

600

800

Ti
m

e
(s

)

(k) Cloud efficiency: friendster.

2 4 6 8 10
Nodes

1

6

11

16

21

M
on

et
ar

y
C

os
t(

x)

(l) Cloud monetary cost: friendster.

3-star 4-star 5-star 3-path 4-path 5-path
Query Pattern

0

5

10

15

20

25

30

Ti
m

e
(s

)

(m) Subgraph counting: bibliography.

WCC PR
Graph Query

0.5

1.0

1.5

2.0

2.5

S
pe

ed
up

Planar
Planarpar

Planarpersist

Planarpar+persist

(n) Ablation study: web-sk,WCC.

5 7 11 15
Average node degree

20

40

60

80

100

Ti
m

e
(s

)

bibliography
uniport

(o) Varying graph density:WCC.

WCC PR
Graph Query

5

10

15

20

25

Ti
m

e
(s

)

Planar
Galois
Subway

CGGraph
AccuGraph

(p) GPU/FPGA systems: friendster.

Figure 4: Efficiency, scalability, partitioning and scheduling of Planar, and its performance vs. multi-machine systems.

of Planar is effective and shows a quick return on investment.

Effectiveness of scheduling. Both grouped and ordered processing of

subgraphs make Planar faster. In our experiments, the trained pro-

filer can accurately predict the round bottleneck in >95% cases; it is

100% accurate forWCC and SSSP. Consider SSSP in Table 2. (1) On

friendster (resp. web-sk), Planarstatic took 4× (resp. 8.5×) more

rounds, generated 14.31× (resp. 7.80×) more disk read and became

4.32× (resp. 8.16×) slower. This is because adaptive grouped pro-

cessing elicits faster convergence, reducing redundant computation

of repetitive border updates and allowing to skip some subgraphs in

later rounds. (2) Planar beats Planarrand by 1.37× on average. This

justifies our ordering on subgraphs, which promotes the locality

for subgraph grouping. The results for the others are consistent.

Other techniques. We experimentally justified our design decisions

to process subgraphs sequentially and cache border updates in-

memory. Figure 4n shows that if we were to allow multiple sub-

graphs to be processed concurrently, Planar would take 1.09–1.14×
longer; if we were to persist the updates to disk, it would be slowed

by 1.26×. The two collectively can speedup Planar by 1.64–1.68×.

Exp-3: Scalability. For both out-of-core and in-memory computa-

tion, we evaluated the scalability of Planar with the number 𝑝 of

CPU cores and the graph size |𝐺 |. We report the results of WCC
and Coloring; the results of the other queries are consistent.

Varying 𝑝 : out-of-core. Scaling the number 𝑝 of cores, we ranWCC
(Figure 4d) and Coloring (Figure 4e) over clueWeb. (1) For WCC,
Planar scales well with 𝑝 . It gets a 2.50× speedupwhen 𝑝 scales from

5 to 20 because its PEval round is CPU-bound. (2) It consistently

beats MiniGraph and GridGraph, which barely scale with 𝑝 due

to the I/O-bound rounds. (3) It outperforms Blaze only when 𝑝 >

10, because its PRAM algorithm is more computation-heavy than

HashMin [96] (by a constant factor, see Example 5). However, the

latter has limited parallelism; Planar speeds up substantially with

more cores, while Blaze barely improves when 𝑝 ≥ 10 since it

cannot fully utilize the additional cores. (4) For Coloring, Planar is
much faster than all baselines for 𝑝 > 5 for similar reasons. It gets

2.10× faster with 4× cores, while other systems speedup <1.64×. Its
I/O-efficient GC rounds can benefit more from higher parallelism.

Varying |𝐺 |: out-of-core. We sampled graphs𝐺 from large clueWeb

using Edge Sampling [59], with a scale factor 𝜂 for the fraction of

edges to be sampled. As shown in Figure 4f when varying 𝜂 from 0.4

to 1.0 forWCC, Planar scales well with |𝐺 |. It takes 2.61× longer,

while it is 3.14× for MiniGraph, 2.68× for Blaze, and 5.33× for

GridGraph. We omit the results ofGraphChi, which is much slower.

Varying 𝑝 : in-memory. Varying 𝑝 from 16 to 96, Figures 4g–4i re-

port the speedup of Planar and in-memory baselines. (1) For WCC,
Planar is up to 1.95× and 28.39× faster than Galois and Ligra, re-

11

spectively. (2) It is 28.3% slower than MiniGraph when 𝑝 = 16;

yet it beats MiniGraph by 1.18×–1.26× with more cores. Consis-

tent with the out-of-core tests (Figure 4d), Planar scales better

than MiniGraph with cores. (3) Using 6× more cores for WCC
(resp. PR), it gets faster by 3.20× (resp. 2.33×), while it is only 1.98×
(resp. 2.28×) for MiniGraph, 1.61× (resp. 2.24×) for Galois. Ligra
scales as well as Planar, yet it is slower by magnitudes (omitted in

Figure 4h). (4) For parallelly scalable Coloring, Planar speeds up by

3.36×with 6×more cores, much better thanMiniGraph (2.02×) and
Galois (2.07×). This verifies that when the PRAM algorithm is par-

allelly scalable, it retains the property for in-memory computations.

Varying |𝐺 |: in-memory. Using all 104 cores, we further tested in-

memory systems by varying the size |𝐺 | of graph 𝐺 . As shown in

Figure 4j forWCC, by varying sampling factor 𝜂 from 0.4 to 1.0 over

clueWeb, Planar scales better with |𝐺 | than VC-based Ligra and

Galois; it takes 2.46× longer, while it is 3.37× for Galois and 4.59×
for Ligra. This justifies the parallel model of Planar, which supports
PRAM algorithms with better asymptotic complexity w.r.t. |𝐺 |. Its
scalability is comparable toMiniGraph (1.98×), since both imple-

ment efficient algorithms and can scale well with the graph size.

Sensitivity to graph topology. Over synthetic graphs forWCC, Fig-
ure 4o shows the performance of Planar under varying graph densi-

ties and types. It takes longer for denser graphs, as expected, scaling

almost linearly with the number of edges. Given a similar graph size,

it performs better over uniprot than more skewed bibliography.
For Coloring and PR, Planar beats the other baselines in all the

settings. The results are consistent and deferred to [2].

Exp-4: Planar vs. hardware-accelerated systems. As shown in

Figure 4p for WCC over friendster, in-memory Planar is 1.10–

2.14× faster than SOTA systems with GPU [19, 79] and FPGA [97]

accelerators. However, it is slower by 1.09–2.61× for PR, an algo-

rithm with a more regular data access pattern and thus can better

utilize the massive hardware concurrency available to GPUs/FPGAs.

Nevertheless, Planar is much more cost-effective, using a server

testbed that costs less than half of a GPU/FPGA accelerator alone.

Moreover, GPU/FPGA cannot natively handle large graphs that

exceed the on-chip memory capacity. We show that the parallel

model of Planar can help address such a limitation. By extending

CGGraph [19] to use Planar for coordinating computation over

subgraphs, it can process 140GB clueWeb using a 32GB-memory

GPU. It becomes 1.13× and 2.44× slower than Planar forWCC and

PR, respectively, due to the excessive host–GPU data transfers.

Exp-5: Planar vs. multi-machine systems. We also evaluated the

performance and cost effectiveness of Planar versus multi-machine

systems GraphScope and Gluon. We deployed all systems in the

cloud. More specifically, we ran Planar on a single 8-vCPU 32GB-

memory instance. Gluon used instances of the same configuration;

GraphScope used multiple 8-vCPU 64GB-memory instances be-

cause it requires more than 32 GB in all cases of our experiment.

Resource demands. Single-node Planar supportsWCC computation

over large graphs; in contrast, multi-machine systems easily run out-

of-memory. Over clueWeb, for example, GraphScope (resp. Gluon)

required at least eight 64GB-memory (resp. four 32GB-memory)

nodes. This verifies that Planar lowers the bar of big graph analytics,

where large memory capacities are no longer a necessity.

Execution time. As shown in Figure 4k for WCC on friendster,
(1) using a single instance, Planar outperforms a 10-node Gluon

cluster by 2.33×, and performs comparably to a 4-node GraphScope

cluster. While GraphScope beats Planar when using 6+ instances

(each with 2× memory capacity), it requires an additional 200+s for

preprocessing, which is not counted in Figure 4k. (2) None of the

multi-machine system scales well. Scaling from 4 to 10 machines

(using 2.5× cores), Gluon and GraphScope run 1.2× and 1.4× faster,

respectively, as the communication cost gradually dominates. In

contrast, the more cores are available, the better Planar works.

Cost effectiveness. For WCC on friendster, Figure 4l shows the

monetary cost of Planar and multi-machine systems, calculated as

the real cloud expense. (1) Although GraphScope and Gluon run

faster with more resources, they do not scale cost-effectively, as also

observed by [68]. (2) The cost of GraphScope is 5.45× that of Planar
for a similar performance; Gluon, running much slower, spends at

least 6.61×more. This further justifies the need for a single-machine

system to make graph analytics accessible and affordable.

Application. Planar boosts real-world graph analytics for its cost

effectiveness. Consider a navigation system for vehicles, to find

the shortest paths between user-specified start and destination in

a large route graph. With limited in-vehicle computing resources,

Planar offers an ideal solution, by speeding up route planning and

improving user experience without requiring high-end hardware.

Summary. We find the following. (1) Planar consistently out-

performs the SOTA single-machine systems. It beats out-of-core

MiniGraph, Blaze, GridGraph and GraphChi by up to 70.77×,
5.09×, 131.12× and 302.01×, respectively; it can handle workload

over large graphs that exceed the capacity of all four baselines. It

speeds up in-memory Galois and Ligra by up to 9.58× and 28.39×,
respectively. (2) Over various out-of-core workloads, it reduces the

I/O cost of the baselines by up to 94.5%. (3) Its partitioner beats

prior ones by at least 1.87×, up to 2.12×, and its scheduling strategy
consistently speeds up performance. (4) It scales well with large

graphs that do not fit in memory. For in-memory computation, on

average it is 3.36× faster when using 6× cores for parallelly scalable

PRAM algorithms. (5) It requires less memory and is consistently

faster than a 10-node Gluon cluster; it performs comparably to

GraphScope with 4 machines, saving the monetary cost by 81.7%.

6 CONCLUSION
The novelty of Planar includes the following. (1) Planar is the first
graph system that makes practical use of existing PRAM algorithms.

(2) It proposes a parallel model that unifies in-memory and out-of-

core graph computations, which goes beyond simple simulation

of PRAM; it separates inter-subgraph data-partitioned parallelism

from intra-subgraph SIMD parallelism to utilize multi-core paral-

lelism, a novel combination. (3) It studies a new graph partition-

ing/scheduling problem, and develops a strategy that solves the

unique challenges not met in multi-machine systems. Our experi-

mental study has validated that Planar is promising in practice.

One topic for future work is to equip Planar with GPU to speed

up analytics. Another topic is to fine-tune Planar for a designated
task, e.g., graph cleaning, for its best performance.

12

REFERENCES
[1] 2024. Friendster dataset. https://snap.stanford.edu/data/com-Friendster.html.

[2] 2024. Full version, with source code availability. https://shuhaoliu.github.io/

assets/papers/planar-full.pdf.

[3] 2024. Graph500 benchmark specifications. https://graph500.org/?page_id=12#

sec-3.

[4] 2024. Hyperlink. http://webdatacommons.org/hyperlinkgraph/.

[5] Marcos K. Aguilera, Naama Ben-David, Irina Calciu, Rachid Guerraoui, Erez

Petrank, and Sam Toueg. 2018. Passing Messages while Sharing Memory. In

PODC. 51–60.
[6] Zhiyuan Ai, Mingxing Zhang, Yongwei Wu, Xuehai Qian, Kang Chen, and

Weimin Zheng. 2017. Squeezing out all the value of loaded data: An out-of-core

graph processing system with reduced disk I/O. In USENIX ATC.
[7] Helmut Alt, Torben Hagerup, Kurt Mehlhorn, and Franco P Preparata. 1987.

Deterministic simulation of idealized parallel computers on more realistic ones.

SIAM J. Comput. 16, 5 (1987), 808–835.
[8] Konstantin Andreev and Harald Racke. 2006. Balanced graph partitioning.

Theory of Computing Systems 39, 6 (2006), 929–939.
[9] Dmitrii Avdiukhin, Sergey Pupyrev, and Grigory Yaroslavtsev. 2019. Multi-

Dimensional Balanced Graph Partitioning via Projected Gradient Descent.

PVLDB 12, 8 (2019), 906–919.

[10] Guillaume Bagan, Angela Bonifati, Radu Ciucanu, George HL Fletcher, Aurélien

Lemay, and Nicky Advokaat. 2016. gMark: Schema-driven generation of graphs

and queries. TKDE 29, 4 (2016), 856–869.

[11] Scott Beamer. 2016. Understanding and improving graph algorithm performance.
Ph.D. Dissertation. EECS Department, University of California, Berkeley.

[12] Naama Ben-David, Guy E Blelloch, Yihan Sun, and Yuanhao Wei. 2019. Mul-

tiversion concurrency with bounded delay and precise garbage collection. In

SPAA. 241–252.
[13] Claude Berge and Ghouila-Houri. 1965. Programming, games and transportation

networks. John Wiley, New York.

[14] Charles-Edmond Bichot and Patrick Siarry. 2013. Graph partitioning. John

Wiley & Sons.

[15] Florian Bourse, Marc Lelarge, and Milan Vojnovic. 2014. Balanced graph edge

partition. In SIGKDD.
[16] Sergey Brin and Lawrence Page. 2012. The anatomy of a large-scale hypertextual

Web search engine. Computer Networks 56, 18 (2012), 3825–3833.
[17] Aydin Buluç, Henning Meyerhenke, Ilya Safro, Peter Sanders, and Christian

Schulz. 2016. Recent Advances in Graph Partitioning. In Algorithm Engineering
- Selected Results and Surveys. 117–158.

[18] Rong Chen, Jiaxin Shi, Yanzhe Chen, Binyu Zang, Haibing Guan, and Haibo

Chen. 2019. Powerlyra: Differentiated graph computation and partitioning on

skewed graphs. ACM Transactions on Parallel Computing 5, 3 (2019), 13.

[19] Pengjie Cui, Haotian Liu, Bo Tang, and Ye Yuan. 2024. CGgraph: An Ultra-

fast Graph Processing System on Modern Commodity CPU-GPU Co-processor.

PVLDB 17, 6 (2024), 1405–1417.

[20] Dong Dai, Wei Zhang, and Yong Chen. 2017. IOGP: An Incremental Online

Graph Partitioning Algorithm for Distributed Graph Databases. In HPDC. 219–
230.

[21] Jonas Dann, Daniel Ritter, and Holger Fröning. 2024. GraphScale: Scalable

Processing on FPGAs for HBM and Large Graphs. ACM Trans. Reconfigurable
Technol. Syst. 17, 2, Article 22 (mar 2024), 23 pages. https://doi.org/10.1145/

3616497

[22] Roshan Dathathri, Gurbinder Gill, Loc Hoang, Hoang-Vu Dang, Alex Brooks,

Nikoli Dryden, Marc Snir, and Keshav Pingali. 2018. Gluon: A Communication-

Optimizing Substrate for Distributed Heterogeneous Graph Analytics. In PLDI.
[23] Roshan Dathathri, Gurbinder Gill, Loc Hoang, Vishwesh Jatala, Keshav Pingali,

V. Krishna Nandivada, Hoang-Vu Dang, and Marc Snir. 2019. Gluon-Async: A

Bulk-Asynchronous System for Distributed andHeterogeneous GraphAnalytics.

In PACT. 15–28.
[24] Wenfei Fan, Tao He, Longbin Lai, Xue Li, Yong Li, Zhao Li, Zhengping Qian,

Chao Tian, Lei Wang, Jingbo Xu, Youyang Yao, Qiang Yin, Wenyuan Yu, Kai

Zeng, Kun Zhao, Jingren Zhou, Diwen Zhu, and Rong Zhu. 2021. GraphScope:

A Unified Engine For Big Graph Processing. PVLDB 14, 12 (2021), 2879–2892.

[25] Wenfei Fan, Ruochun Jin, Muyang Liu, Ping Lu, Xiaojian Luo, Ruiqi Xu, Qiang

Yin, Wenyuan Yu, and Jingren Zhou. 2020. Application Driven Graph Partition-

ing. In SIGMOD.
[26] Wenfei Fan, Jianzhong Li, Shuai Ma, Nan Tang, Yinghui Wu, and Yunpeng Wu.

2010. Graph Pattern Matching: From Intractability to Polynomial Time. PVLDB
3, 1-2 (2010), 264–275.

[27] Wenfei Fan, Muyang Liu, Chao Tian, Ruiqi Xu, and Jingren Zhou. 2020. Incre-

mentalization of graph partitioning algorithms. PVLDB 13, 8 (2020), 1261–1274.

[28] Wenfei Fan, Chao Tian, Ruiqi Xu, Qiang Yin, Wenyuan Yu, and Jingren Zhou.

2021. Incrementalizing graph algorithms. In SIGMOD. 459–471.
[29] Wenfei Fan, Wenyuan Yu, Jingbo Xu, Jingren Zhou, XiaoJian Luo, Qiang Yin,

Ping Lu, Yang Cao, and Ruiqi Xu. 2018. Parallelizing Sequential Graph Compu-

tations. TODS 43, 18 (2018).
[30] Steven Fortune and James Wyllie. 1978. Parallelism in random access machines.

In STOC. 114–118.
[31] Michael L. Fredman and Robert Endre Tarjan. 1987. Fibonacci heaps and their

uses in improved network optimization algorithms. Journal of the ACM (1987),

596–615.

[32] Michael Garey and David Johnson. 1979. Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman and Company.

[33] Assefaw Hadish Gebremedhin and Fredrik Manne. 2000. Scalable parallel

graph coloring algorithms. Concurrency: Practice and Experience 12, 12 (2000),
1131–1146.

[34] Fady Ghanim, Uzi Vishkin, and Rajeev Barua. 2017. Easy PRAM-based high-

performance parallel programming with ICE. TPDS 29, 2 (2017), 377–390.
[35] Gurbinder Gill, Roshan Dathathri, Loc Hoang, Ramesh Peri, and Keshav Pingali.

2020. Single Machine Graph Analytics on Massive Datasets Using Intel Optane

DC Persistent Memory. PVLDB 13, 8 (2020), 1304–1318.

[36] Leslie M Goldschlager. 1978. A unified approach to models of synchronous

parallel machines. In STOC. 89–94.
[37] Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos

Guestrin. 2012. PowerGraph: Distributed Graph-Parallel Computation on Natu-

ral Graphs. In USENIX OSDI.
[38] Raymond Greenlaw, H. James Hoover, and Walter L. Ruzzo. 1995. Limits to

Parallel Computation: P-Completeness Theory. Oxford University Press.

[39] Elaine T. Hale, Wotao Yin, and Yin Zhang. 2008. Fixed-Point Continuation for

ℓ1-Minimization: Methodology and Convergence. SIAM Journal on Optimization
19, 3 (2008), 1107–1130.

[40] Minyang Han and Khuzaima Daudjee. 2015. Giraph Unchained: Barrierless

Asynchronous Parallel Execution in Pregel-like Graph Processing Systems.

PVLDB 8, 9 (2015), 950–961.

[41] Qirong Ho, James Cipar, Henggang Cui, Seunghak Lee, Jin Kyu Kim, Phillip B.

Gibbons, Garth A. Gibson, Gregory R. Ganger, and Eric P. Xing. 2013. More

Effective Distributed ML via a Stale Synchronous Parallel Parameter Server. In

NIPS. 1223–1231.
[42] Alexandru Iosup, Tim Hegeman, Wing Lung Ngai, Stijn Heldens, Arnau Prat-

Pérez, Thomas Manhardt, Hassan Chafi, Mihai Capota, Narayanan Sundaram,

Michael J. Anderson, Ilie Gabriel Tanase, Yinglong Xia, Lifeng Nai, and Peter A.

Boncz. 2016. LDBC Graphalytics: A benchmark for large-scale graph analysis

on parallel and distributed platforms. PVLDB 9, 13 (2016), 1317–1328.

[43] Nilesh Jain, Guangdeng Liao, and Theodore L Willke. 2013. Graphbuilder:

Scalable graph ETL framework. Graph Data Management Experiences and
Systems (2013).

[44] Joseph JáJá. 1992. An introduction to parallel algorithms. Addison-Wesley.

[45] Lokesh N. Jaliminche, Chandranil Nil Chakraborttii, Changho Choi, and Heiner

Litz. 2023. Enabling Multi-tenancy on SSDs with Accurate IO Interference

Modeling. In SoCC.
[46] David R Karger, Noam Nisan, and Michal Parnas. 1992. Fast connected compo-

nents algorithms for the EREW PRAM. In SPAA. 373–381.
[47] George Karypis and Vipin Kumar. 1995. METIS–unstructured graph partitioning

and sparse matrix ordering system, version 2.0. Technical Report. University of

Minnesota.

[48] George Karypis and Vipin Kumar. 1998. METIS: A software package for parti-

tioning unstructured graphs. Partitioning Meshes, and Computing Fill-Reducing
Orderings of Sparse Matrices Version 4 (1998).

[49] George Karypis and Vipin Kumar. 1998. Multilevel k-way partitioning scheme

for irregular Graphs. JPDC 48, 1 (1998), 96–129.

[50] Arijit Khan. 2017. Vertex-Centric Graph Processing: Good, Bad, and the Ugly.

In EDBT. 438–441.
[51] Farzad Khorasani, Keval Vora, Rajiv Gupta, and Laxmi N. Bhuyan. 2014. CuSha:

vertex-centric graph processing on GPUs. In Proceedings of the 23rd International
Symposium on High-Performance Parallel and Distributed Computing (Vancouver,
BC, Canada) (HPDC ’14). Association for Computing Machinery, New York, NY,

USA, 239–252. https://doi.org/10.1145/2600212.2600227

[52] Juno Kim and Steven Swanson. 2022. Blaze: Fast graph processing on fast SSDs.

In SC. 1–15.
[53] Mijung Kim and K Selçuk Candan. 2012. SBV-Cut: Vertex-cut based graph

partitioning using structural balance vertices. Data&Knowledge Engineering 72

(2012), 285–303.

[54] Thomas N Kipf and Max Welling. 2016. Semi-supervised classification with

graph convolutional networks. In ICLR.
[55] Robert Krauthgamer, Joseph Naor, and Roy Schwartz. 2009. Partitioning graphs

into balanced components. In SODA.
[56] Clyde P. Kruskal, Larry Rudolph, and Marc Snir. 1990. A complexity theory of

efficient parallel algorithms. Theoretical Computer Science 71, 1 (1990), 95–132.
[57] Aapo Kyrola, Guy E. Blelloch, and Carlos Guestrin. 2012. GraphChi: Large-scale

graph computation on just a PC. In USENIX OSDI.
[58] Bryant C. Lee, Uzi Vishkin, and George C. Caragea. 2007. Models for Advancing

PRAM and Other Algorithms into Parallel Programs for a PRAM-On-Chip Plat-

form. In Handbook of Parallel Computing - Models, Algorithms and Applications.
Chapman and Hall/CRC.

[59] Jure Leskovec and Christos Faloutsos. 2006. Sampling from large graphs. In

13

https://snap.stanford.edu/data/com-Friendster.html
https://shuhaoliu.github.io/assets/papers/planar-full.pdf
https://shuhaoliu.github.io/assets/papers/planar-full.pdf
https://graph500.org/?page_id=12#sec-3
https://graph500.org/?page_id=12#sec-3
http://webdatacommons.org/hyperlinkgraph/
https://doi.org/10.1145/3616497
https://doi.org/10.1145/3616497
https://doi.org/10.1145/2600212.2600227

SIGKDD.
[60] Dongsheng Li, Yiming Zhang, Jinyan Wang, and Kian-Lee Tan. 2019. TopoX:

Topology Refactorization for Efficient Graph Partitioning and Processing.

PVLDB 12, 8 (2019), 891–905.

[61] Yifan Li. 2017. Edge partitioning of large graphs. Ph.D. Dissertation. Université
Pierre et Marie Curie-Paris VI.

[62] Hang Liu and H Howie Huang. 2017. Graphene: Fine-Grained IO Management

for Graph Computing. In FAST. 285–300.
[63] Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny Bickson, Carlos Guestrin,

and Joseph M Hellerstein. 2012. Distributed GraphLab: A Framework for

Machine Learning and Data Mining in the Cloud. PVLDB 5, 8 (2012), 716–727.

[64] Lingxiao Ma, Zhi Yang, Han Chen, Jilong Xue, and Yafei Dai. 2017. Garaph:

Efficient GPU-accelerated Graph Processing on a Single Machine with Balanced

Replication. In USENIX ATC.
[65] Steffen Maass, Changwoo Min, Sanidhya Kashyap, Woon-Hak Kang, Mohan

Kumar, and Taesoo Kim. 2017. Mosaic: Processing a Trillion-Edge Graph on a

Single Machine. In EuroSys.
[66] Grzegorz Malewicz, Matthew H. Austern, Aart J. C. Bik, James C. Dehnert,

Ilan Horn, Naty Leiser, and Grzegorz Czajkowski. 2010. Pregel: A system for

large-scale graph processing. In SIGMOD.
[67] Daniel W. Margo and Margo I. Seltzer. 2015. A Scalable Distributed Graph

Partitioner. PVLDB 8, 12 (2015), 1478–1489.

[68] Frank McSherry, Michael Isard, and Derek Gordon Murray. 2015. Scalability!

But at what COST?. In HotOS.
[69] Ulrich Meyer and Peter Sanders. 2003. Δ-stepping: A parallelizable shortest

path algorithm. Journal of Algorithms 49, 1 (2003), 114–152.
[70] Timothy Prickett Morgan. 2018. The End of Xeon Phi - It’s Xeon and Maybe

GPUs From Here. https://www.nextplatform.com/2018/07/27/end-of-the-line-

for-xeon-phi-its-all-xeon-from-here/.

[71] Derek G Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul Barham,

and Martín Abadi. 2013. Naiad: A timely dataflow system. In SOSP.
[72] Donald Nguyen, Andrew Lenharth, and Keshav Pingali. 2013. A lightweight

infrastructure for graph analytics. In SOSP.
[73] Gopal Pandurangan, Peter Robinson, and Michele Scquizzato. 2018. The dis-

tributed minimum spanning tree problem. Bulletin of EATCS 2, 125 (2018).
[74] Fabio Petroni, Leonardo Querzoni, Khuzaima Daudjee, Shahin Kamali, and Gior-

gio Iacoboni. 2015. HDRF: Stream-Based Partitioning for Power-Law Graphs.

In CIKM.

[75] Alex Pothen, Horst D Simon, and Kang-Pu Liou. 1990. Partitioning sparse

matrices with eigenvectors of graphs. SIMAX 11, 3 (1990), 430–452.

[76] Robert Clay Prim. 1957. Shortest connection networks and some generalizations.

Bell System Technical Journal 36, 6 (1957), 1389–1401.
[77] Ryan A. Rossi and Nesreen K. Ahmed. 2015. The Network Data Repository

with Interactive Graph Analytics and Visualization. In AAAI. 4292–4293.
[78] Amitabha Roy, Ivo Mihailovic, and Willy Zwaenepoel. 2013. X-stream: Edge-

centric graph processing using streaming partitions. In SOSP.
[79] Amir Hossein Nodehi Sabet, Zhijia Zhao, and Rajiv Gupta. 2020. Subway:

Minimizing data transfer during out-of-GPU-memory graph processing. In

Eurosys.
[80] Sebastian Schelter, Stephan Ewen, Kostas Tzoumas, and Volker Markl. 2013.

"All roads lead to Rome": Optimistic recovery for distributed iterative data

processing. In CIKM.

[81] Tomer Shanny and Adam Morrison. 2022. Occualizer: Optimistic Concurrent

Search Trees From Sequential Code. In USENIX OSDI.
[82] Yossi Shiloach and Uzi Vishkin. 1982. An𝑂 (log𝑛) parallel connectivity algo-

rithm. Journal of Algorithms 3, 1 (1982), 57–67.
[83] Julian Shun and Guy E. Blelloch. 2013. Ligra: A lightweight graph processing

framework for shared memory. In SIGPLAN. 135–146.
[84] George M Slota, Sivasankaran Rajamanickam, and Kamesh Madduri. 2017.

PuLP/XtraPuLP: Partitioning Tools for Extreme-Scale Graphs. Technical Report.
Sandia National Laboratory.

[85] Vasily Tarasov, Saumitra Bhanage, Erez Zadok, andMargo I Seltzer. 2011. Bench-

marking File System Benchmarking: It IS Rocket Science.. In HotOS.
[86] Yuanyuan Tian, Andrey Balmin, Severin Andreas Corsten, Shirish Tatikonda,

and John McPherson. 2013. From "think like a vertex" to "think like a graph".

PVLDB 7, 3 (2013), 193–204.

[87] Leslie G. Valiant. 1990. A Bridging Model for Parallel Computation. CACM 33,

8 (1990), 103–111.

[88] Leslie G. Valiant. 1990. General Purpose Parallel Architectures. In Handbook of
Theoretical Computer Science, Volume A: Algorithms and Complexity. 943–972.

[89] Keval Vora, Guoqing Xu, and Rajiv Gupta. 2016. Load the Edges You Need: A

Generic I/O Optimization for Disk-based Graph Processing. In USENIX ATC.
[90] Guozhang Wang, Wenlei Xie, Alan J. Demers, and Johannes Gehrke. 2013.

Asynchronous Large-Scale Graph Processing Made Easy. In CIDR.
[91] Yangzihao Wang, Andrew Davidson, Yuechao Pan, Yuduo Wu, Andy Riffel,

and John D. Owens. 2016. Gunrock: a high-performance graph processing

library on the GPU. In Proceedings of the 21st ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (Barcelona, Spain) (PPoPP ’16).
Association for Computing Machinery, New York, NY, USA, Article 11, 12 pages.

https://doi.org/10.1145/2851141.2851145

[92] Dominic JAWelsh andMartin B Powell. 1967. An upper bound for the chromatic

number of a graph and its application to timetabling problems. Comput. J. 10, 1
(1967), 85–86.

[93] E. P. Xing, Q. Ho, W. Dai, J. K. Kim, J. Wei, S. Lee, X. Zheng, P. Xie, A. Kumar,

and Y. Yu. 2015. Petuum: A New Platform for Distributed Machine Learning on

Big Data. TBD 1, 2 (2015), 49–67.

[94] Xianghao Xu, Fang Wang, Hong Jiang, Yongli Cheng, Dan Feng, and Yongxuan

Zhang. 2020. A Hybrid Update Strategy for I/O-Efficient Out-of-Core Graph

Processing. TPDS 31, 8 (2020), 1767–1782.
[95] Da Yan, James Cheng, Yi Lu, and Wilfred Ng. 2014. Blogel: A Block-Centric

Framework for Distributed Computation on Real-World Graphs. PVLDB 7, 14

(2014), 1981–1992.

[96] Da Yan, James Cheng, Kai Xing, Yi Lu, Wilfred Ng, and Yingyi Bu. 2014. Pregel

Algorithms for Graph Connectivity Problems with Performance Guarantees.

PVLDB 7, 14 (2014), 1821–1832.

[97] Pengcheng Yao, Long Zheng, Xiaofei Liao, Hai Jin, and Bingsheng He. 2018. An

efficient graph accelerator with parallel data conflict management. In Proceed-
ings of the 27th International Conference on Parallel Architectures and Compilation
Techniques (Limassol, Cyprus) (PACT ’18). Association for Computing Machin-

ery, New York, NY, USA, Article 8, 12 pages. https://doi.org/10.1145/3243176.

3243201

[98] Chenzi Zhang, Fan Wei, Qin Liu, Zhihao Gavin Tang, and Zhenguo Li. 2017.

Graph Edge Partitioning via Neighborhood Heuristic. In SIGKDD.
[99] Kaiyuan Zhang, Rong Chen, and Haibo Chen. 2015. NUMA-aware graph-

structured analytics. In PPoPP. 183–193.
[100] Yunming Zhang, Mengjiao Yang, Riyadh Baghdadi, Shoaib Kamil, Julian Shun,

and Saman Amarasinghe. 2018. Graphit: A high-performance graph DSL. OOP-
SLA 2 (2018), 1–30.

[101] Da Zheng, Disa Mhembere, Randal Burns, Joshua Vogelstein, Carey E Priebe,

and Alexander S Szalay. 2015. FlashGraph: Processing Billion-Node graphs on

an array of commodity SSDs. In FAST. 45–58.
[102] Xiangyu Zhi, Xiao Yan, Bo Tang, Ziyao Yin, Yanchao Zhu, and Minqi Zhou.

2023. CoroGraph: Bridging Cache Efficiency and Work Efficiency for Graph

Algorithm Execution. PVLDB 17, 4 (2023), 891–903.

[103] Shijie Zhou, Rajgopal Kannan, Viktor K. Prasanna, Guna Seetharaman, and

Qing Wu. 2019. HitGraph: High-throughput Graph Processing Framework

on FPGA. IEEE Transactions on Parallel and Distributed Systems 30, 10 (2019),
2249–2264. https://doi.org/10.1109/TPDS.2019.2910068

[104] Xiaowei Zhu, Wenguang Chen, Weimin Zheng, and Xiaosong Ma. 2016. Gemini:

A computation-centric distributed graph processing system. In USENIX OSDI.
[105] Xiaowei Zhu, Wentao Han, and Wenguang Chen. 2015. GridGraph: Large-Scale

Graph Processing on a Single Machine Using 2-Level Hierarchical Partitioning.

In USENIX ATC.
[106] Xiaoke Zhu, Yang Liu, Shuhao Liu, and Wenfei Fan. 2023. MiniGraph: Querying

big graphs with a single machine. PVLDB 16, 9 (2023), 2172–2185.

14

https://www.nextplatform.com/2018/07/27/end-of-the-line-for-xeon-phi-its-all-xeon-from-here/
https://www.nextplatform.com/2018/07/27/end-of-the-line-for-xeon-phi-its-all-xeon-from-here/
https://doi.org/10.1145/2851141.2851145
https://doi.org/10.1145/3243176.3243201
https://doi.org/10.1145/3243176.3243201
https://doi.org/10.1109/TPDS.2019.2910068

Table 4: Notations
Notation Definition

Q,𝑄 a class of graph queries, a query𝑄 ∈ Q
𝐺 ,A, P graph, PRAMgraph algorithm, graph partitioner

𝑆 (𝐺), (𝑆𝑉 , 𝑆𝐸 , 𝑆𝐺) status ofA over graph𝐺 and its vertex/edge/global status

𝑅 (𝐺) = (𝐺,𝑆 (𝐺)) state of algorithmA for graph𝐺
𝐹𝑖 ,𝑉𝑖 ,𝐸𝑖 the 𝑖-th fragment (subgraph) of graph𝐺 , its vertex set and edge set

𝐹𝑖 .𝐵 border entities (vertices and edges) of 𝐹𝑖
𝑆 (𝐹𝑖) ,𝑆 (𝐹𝑖 .𝐵) status associatedwith 𝐹𝑖 and its border entities, respectively

𝑅𝑖 ,𝑆 (𝐹𝑖) partial state of and status associatedwith 𝐹𝑖
Ψ,Ψ[𝐹𝑖] key-value store inUpdateCache and its subsetw.r.t. 𝐹𝑖

A PROGRAMMINGWITH PLANAR
We first identify conditions under which the PRAM algorithms

plugged into Planar guarantee to converge at correct answers in ex-

ecution. Then, we provide Planar programs for SSSP, PR, Coloring,
MST and RW with corresponding PRAM algorithms.

The notations of this paper are summarized in Table 4.

A.1 Correctness
We first present convergence guarantee for the parallel model of

Planar as a sufficient condition. In general, the correctness and the

convergence conditions for GC computations [29] can be readily

adapted to the corresponding Planar computations.

Recall the fixpoint model for out-of-core Planar computation

(Section 3.2). The fixpoint operator of Planar differs from that of

GC [29] in the following. (1) Rather than being applied over dif-

ferent subgraphs in parallel, it is evaluated over subgraphs one

by one sequentially, where each subgraph is processed at most

once in a round. (2) It supports intra-subgraph parallelism on each

in-memory subgraph, specified by a sequence of SIMD operations.

Notations. We use the following notations.

(1) Planar program 𝜌 terminates with partitioner P if for all queries

𝑄 ∈ Q and all graphs 𝐺 , there always exists a positive integer 𝑡

such that after round 𝑡 , 𝑅𝑡
𝑖
= 𝑅𝑡+1

𝑖
for all 𝑖 ∈ [1,𝑚].

(2) Planar program 𝜌 with PEval, IncEval and Assemble is correct
for Q w.r.t. P, if for all queries 𝑄 ∈ Q and all graphs 𝐺 , Assemble
over partial states 𝑅𝑡

1
, . . . , 𝑅𝑡𝑚 produces 𝑄 (𝐺) at any round 𝑡 when

variables in partial state 𝑅𝑡
𝑖
(𝑖 ∈ [1,𝑚]) have the same values as in

𝑅𝑡−1

𝑡 , where 𝑄 (𝐺) is the answer to query 𝑄 in graph 𝐺 .

Planar correctly executes 𝜌 with P, if for all queries 𝑄 ∈ Q and

all graphs 𝐺 , 𝜌 terminates with P and returns 𝑄 (𝐺).
(3) We say that PEval and IncEval satisfy the monotonic condition
w.r.t. partitioner P, if for graphs 𝐺 and every status variable 𝑥 ∈
𝑆 (𝐺), (a) the values of𝑥 are from a finite set computed from values in

the active domain of𝐺 (i.e., the constants in𝐺); and (b) there exists
a partial order ≤𝑝𝑥 on the values of 𝑥 such that IncEval decreases
the value of variable 𝑥 in the order of 𝑝𝑥 in the computation.

Intuitively, condition (a) above says that variable 𝑥 draws values

from a finite domain, and condition (b) says that 𝑥 is updated “mono-

tonically” following the partial order 𝑝𝑥 in the iterative IncEval
rounds. These ensure that Planar program 𝜌 terminates under P.

Below is a condition for the correctness of Planar execution.

Theorem 2: Consider a Planar program 𝜌 for graph query class
Q. Planar correctly executes 𝜌 with partitioner P if (a) PEval and
IncEval satisfy the monotonic conditionw.r.t. P, and (b) 𝜌 with PEval,
IncEval and Assemble is correct for Q w.r.t. P. 2

Table 5: Parallel model of Planar vs. VC/EC. Assuming power-law
graph𝐺 , whose diameter is 𝐷 and maximum vertex degree is 𝑑 .

Q Model In-memory Out-of-core

Work Parallel Scalability # I/O Rounds

WCC Planar 𝑂 ((|𝑉 | + |𝐸 |) log𝐷) [82] × ⌈log min{𝑚,𝐷 } ⌉
VC/EC 𝑂 ((|𝑉 | + |𝐸 |)𝐷) [96] × 𝐷

SSSP Planar 𝑂 (|𝑉 | log |𝑉 | + |𝐸 |) [69] ✓ min{𝑚,𝐷 }
VC/EC 𝑂 (|𝐸 | log |𝑉 |) [66] × 𝐷

PR Planar 𝑂 (|𝑉 | + |𝐸 |) [16] × 𝑂 (|𝑉 |)
VC/EC 𝑂 (|𝑉 | + |𝐸 |) [16] × 𝑂 (|𝑉 |)

Coloring Planar 𝑂 (𝑑 |𝑉 |) [33] ✓ |𝑉 |
VC/EC 𝑂 (𝑑 |𝑉 |) [33] × |𝑉 |

MST Planar 𝑂 (|𝑉 |2) [13] × ⌈log min{𝑚,𝐷 } ⌉
VC/EC 𝑂 ((|𝑉 | + |𝐸 |)𝐷) [76] × 𝐷

RW
(length-𝑙 walks)

Planar 𝑂 (𝑙 |𝑉 |) [46] ✓ min{𝑚, 𝑙 }
VC/EC 𝑂 (𝑙 |𝑉 |) [66] ✓ 𝑙

Here (1) under the monotonic condition, Planar program 𝜌 guar-

antees to terminate, and (2) it converges at correct answer𝑄 (𝐺) for
all queries𝑄 ∈ Q and all graphs𝐺 as long as the PRAM algorithms

PEval, IncEval and Assemble of 𝜌 are correct for query class Q.
In other words, condition (a) guarantees termination of 𝜌 , and

conditions (a) and (b) put together guarantee the correctness of 𝜌 .

Note that Theorem 2 just exemplifies one set of conditions for

the correctness; a variety of other convergence conditions have

been studied, e.g., [39, 41, 80, 93], which can also characterize and

guarantee the correctness of Planar programs.

Proof. We show the correctness of Theorem 2 by analyzing the

computations of a Planar program. Observe the following.

(1) Termination. Under the monotonic condition, we have that

. . . ≤𝑝𝑥 𝑅𝑡+1

𝑖
≤𝑝𝑥 . . . ≤𝑝𝑥 𝑅1

𝑖
≤𝑝𝑥 𝑅0

𝑖
for 𝑖 ∈ [1,𝑚]. Since the

partial states draw values from a finite domain, there must exist 𝑡

such that 𝑅𝑡+1

𝑖
= 𝑅𝑡

𝑖
for all 𝑖 ∈ [1,𝑚]. Thus 𝜌 terminates.

(2) Correctness. From the argument above it follows that the al-

gorithm 𝜌 must terminate at some round 𝑡 . By condition (b),

Assemble(𝑅𝑡
1
, . . . , 𝑅𝑡𝑚) = 𝑄 (𝐺), i.e., 𝜌 computes 𝑄 (𝐺). □

A.2 Case Studies
We next show how to program with Planar for various graph

query classes. We compare the parallel model of Planarwith VC/EC
w.r.t. the amount of work, parallel scalability and I/O. In addition

toWCC (Examples 2–4), we show how to program with Planar for
SSSP, PR, Coloring,MST, and RW as case studies. The key results

are summarized in Table 5.

1. Single-Source Shortest Path. We start with the single-source

shortest path (SSSP) problem. Consider a directed graph 𝐺 =

(𝑉 , 𝐸, 𝐿), where label 𝐿(𝑒) ∈ [0, 1] denotes weight for 𝑒 ∈ 𝐸. A

path is ⟨𝑢1, 𝑢2, . . . , 𝑢𝑘+1
⟩ where ⟨𝑢𝑖 , 𝑢𝑖+1⟩ is an edge (1 ≤ 𝑖 ≤ 𝑘);

its length is Σ𝑘−1

𝑖=0
𝐿(⟨𝑢𝑖 , 𝑢𝑖+1⟩). For a pair (𝑠, 𝑣) of vertices, dist(𝑠, 𝑣)

denotes the length of the shortest path from 𝑠 to 𝑣 ; in particular,

dist(𝑠, 𝑣) = ∞ if 𝑣 is not reachable from 𝑠 . Given 𝐺 and a source

vertex 𝑠 , SSSP is to compute dist(𝑠, 𝑣) for all vertices 𝑣 ∈ 𝑉 .
Outline. Planar takes the PRAM algorithm Δ-stepping of [69] as

ASSSP, which implements a technique known as label correcting.

For each vertex 𝑣 , it iteratively refines the tentative distance tent(𝑣)
of 𝑣 from source 𝑠 via edge relaxations. The relaxations reduce

15

Algorithm 4: Δ-stepping [69] for SSSP in Planar.
Status Declaration: 𝑆𝑉 = { ¯tent}: tent(𝑣) = ∞, for each 𝑣 ∈ 𝑉 ;

StatusCR: (tent(𝑣), tent′ (𝑣)) ⇒ min{tent(𝑣), tent′ (𝑣) }.
Function PEval (source vertex 𝑠 , subgraph 𝐹𝑖 , parameter Δ) :
1 if 𝑠 ∉ 𝑉𝑖 then return 𝑅𝑖 = (𝐹𝑖 , 𝑆 (𝐹𝑖)) ;
2 init bucket array 𝐵; Relax (𝑠 , 0); 𝑖 := 0;

3 while non-empty bucket exists in 𝐵 do
4 𝐷 := ∅; /* records deleted vertices for the round. */
5 while 𝐵 not empty do
6 𝐷 := 𝐷 ∪ 𝐵 [𝑖]; copy𝐶 := 𝐵 [𝑖]; clear bucket 𝐵 [𝑖] := ∅;
7 EApply((∀𝑒 ∈ {𝑒 |𝑒.src ∈ 𝐶, 𝑒 ∈ 𝐸𝑖 , 𝐿𝑖 (𝑒) ≤ Δ}) ⇒

Relax(𝑒.dst, 𝑡 (𝑒.src) + 𝐿𝑖 (𝑒))) ; /* relax light edges. */

8 EApply((∀𝑒 ∈ {𝑒 |𝑒.src ∈ 𝐷, 𝑒 ∈ 𝐸𝑖 , 𝐿𝑖 (𝑒) > Δ}) ⇒
Relax(𝑒.dst, 𝑡 (𝑒.src) + 𝐿𝑖 (𝑒))) ; /* relax heavy edges. */

9 𝑖 := 𝑖 + 1;

10 return 𝑅𝑖 = (𝐹𝑖 , 𝑆 ′ (𝐹𝑖)) , where 𝑆 ′ (𝐹𝑖) has updated ¯tent;

Procedure Relax (𝑣, tent′):
11 if tent′ < tent(𝑣) then
12 relocate 𝑣 into bucket 𝐵 [⌊tent′/Δ⌋]; tent(𝑣) := tent′ ;

tent(𝑣) when a shorter path from 𝑠 to 𝑣 is found.

As shown in Algorithm 4, PEval takes as input a vertex-cut

subgraph 𝐹𝑖 of𝐺 , source 𝑠 and parameter Δ. It declares vertex status
𝑆𝑉 to include tent(𝑣) = ∞ for each 𝑣 in 𝑉𝑖 except tent(𝑠) = 0. For

conflicting tent(𝑣) of a border vertex 𝑣 , it keeps the shortest in Ψ. It
uses an array 𝐵 of buckets to keep track of vertices that need to be

relaxed, where each bucket represents distance range of size Δ from

𝑠 . It starts with the immediate neighbors of 𝑠 (line 2), and works

iteratively to update tent(𝑣) of 𝑣 in the first non-empty bucket

(lines 3–9). It deals with “light” edges of weight at most Δ in parallel

(lines 5–7), before processing the remainder “heavy” edges (line 8).

IncEval works incrementally by only dealing with vertices that

are affected by updates in Ψ[𝐹𝑖] in the last round. It follows the

same lines as PEval, except that it starts with edges outwards of

updated border vertices, instead the source 𝑠 .

When no more distance updates can be made, Assemble takes
the latest tent(𝑣) values of all 𝑣 ∈ 𝑉 as dist(𝑠, 𝑣).
Benefits over VC. Consider a popular VC algorithm [66] for SSSP.
In a nutshell, it works by iteratively refining tent(𝑣) for each vertex

𝑣 based on the minimum sum of each in-neighbor 𝑢’s tentative

distance and edge weight 𝐿(⟨𝑢, 𝑣⟩). Observe the following.
(1) In-memory. On a power-law graph𝐺 , Planar does𝑂 (|𝑉 | log |𝑉 |+
|𝐸 |) amount of work, lower than 𝑂 (|𝐸 | log |𝑉 |) of VC. Moreover,

ASSSP is proven parallelly scalable [69] relative to sequential Dijk-

stra’s algorithm [31], yet VC does not guarantee this, since ASSSP
reduces redundant edge relaxations with its flexible control flow.

(2) Out-of-core. As in the case for WCC, Planar reduces disk I/O by

taking fewer rounds than VC when computing for SSSP, in light of

its beyond-neighborhood computation.

2. PageRank. We next consider PageRank (PR) [16], a problem

that fits VC. PR takes as input a directed graph 𝐺 = (𝑉 , 𝐸) (e.g.,
hyperlinks amongWeb pages) and a transition probability 𝜖 ∈ (0, 1);
it returns the ranking scores of all vertices in𝐺 . The ranking scores

model the stationary distribution of a Markov process; for each

vertex 𝑣 in 𝑉 , 𝑣 ’s ranking can be computed following

𝑟 (𝑣) = 𝑑 · Σ{𝑢 | ⟨𝑢,𝑣⟩∈𝐸}
𝑟 (𝑢)

𝑢.degree+
+ (1 − 𝑑), (3)

Algorithm 5: PR in Planar.
Status Declaration: 𝑆𝑉 = {𝑟 }: 𝑟 (𝑣) = rand() , for each 𝑣 ∈ 𝑉 ;

StatusCR: (𝑟 (𝑣), 𝑟 ′ (𝑣)) ⇒ mean(𝑟 (𝑣), 𝑟 ′ (𝑣)) .
Function PEval (fragment 𝐹𝑖 , parameter 𝑑 = 1 − 𝜖) :
1 Π := { (𝑣.id, 0) | 𝑣 ∈ 𝑉𝑖 };
2 EApply ((𝑒 ∈ 𝐸𝑖) ⇒ Propagate(𝑒));
3 VApply ((𝑣 ∈ 𝑉𝑖) ⇒ UpdateRank(𝑣));
4 return 𝑅𝑖 = (𝐹𝑖 , 𝑆 ′ (𝐹𝑖)) , where 𝑆 ′ (𝐹𝑖) contains updated 𝑟 ;
Function IncEval (partial result 𝑅𝑖 , updates Ψ[𝐹𝑖], parameter 𝑑) :
5 Π := { (𝑣.id, 0) |𝑣 ∈ 𝑉𝑖 };
6 VApply((∀𝑣 ∈ Ψ[𝐹𝑖] (𝑟)) ⇒ 𝑟 (𝑣) := Ψ[𝐹𝑖] (𝑟 (𝑣))) ;
7 repeat Line 2–3 of function PEval; return 𝑅𝑖 ;

Procedure Propagate (⟨𝑢, 𝑣⟩): /* 𝐹𝑖 , Π accessible in global storage. */:
8 Π[𝑣.id] := Π[𝑣.id] + 𝑟 (𝑢)/𝑢.degree+ ;

Procedure UpdateRank (𝑢): /* 𝐹𝑖 , Π accessible in global storage. */:
9 𝑟 (𝑣) := 𝑑 · Π[𝑣.id] + 𝜖 ;

where𝑑 = 1−𝜖 is the damping factor and𝑢.degree+ denotes the out-
degree of 𝑢. This update function is applied iteratively to refine the

ranking scores, until the computation approximates a steady state,

i.e., the Euclidean distance between the ranks in two consecutive

iterations is below a predefined threshold 𝛿 > 0.

Outline. Planar takes the PRAM algorithm of [16] asAPR, as shown

in Algorithm 5. In each iteration, algorithm APR recomputes the

score of each vertex based on the scores of its neighbors. More

specifically, PEval initializes the in-degree of each vertex 𝑣 in the

vertex status 𝑆𝐷 . In PEval round, it scans all fragments and accumu-

lates the in-degree of each vertex in parallel. For IncEval round, it
initializes the score of each vertex 𝑣 as 1.0/𝑑 (𝑣), in the first IncEval
round. Then it updates the score of each vertex based on the scores

of its neighbors as Pull procedure does. It returns the updated scores
of all vertices. For the later IncEval rounds, it updates the scores of
border vertices first, and then does the same Pull operation.

(1) PEval and IncEval. As shown in Algorithm 5, Planar for PR
declares vertex status 𝑆𝑉 , which includes the intermediate ranking

scores for all vertices. The ranking 𝑟 (𝑣) for each vertex 𝑣 in 𝑉 is

initialized as a random number in the range of (0, 1).
PEval starts by initializing an auxiliary structure Π, an in-

memory hashmap that indexes the aggregate ranks from neighbors

for each vertex 𝑣 , i.e., calculating the total “intensity of incoming

flows” for the round (Line 1). It then (1) uses EApply to propagate

the ranks of vertices along edges (Line 2); and (2) updates 𝑟 (𝑣) by
combining the aggregate message Π[𝑣], for each 𝑣 in 𝑉𝑖 (Line 3).

Conflicts may occur in the intermediate ranking scores of a

border vertex 𝑣 ; they are resolved by taking the mean ranks of

the same vertex among different fragments. After incorporating

conflict-resolved rank 𝑟 (𝑣) for each border vertex 𝑣 , IncEval follows
the same lines of PEval to update all ranks in another iteration.

(2) Assemble commences when IncEval cannot make significant

changes, suggesting that a fixpoint has been reached. It concludes

the process by returning the ranks associated to all vertices.

Benefits over VC. Both models support algorithm APR. However,

as shown in Section 5, Planar is faster than VC due to its parallel

execution, data organizations and patterns of memory accesses.

(1) In-memory. Planar does the same amount of work as VC does.

Moreover, neither the parallel model of Planar nor VC is parallelly

16

Algorithm 6: Coloring in Planar.
Status Declaration: 𝑆𝑉 = {𝑐 }: 𝑐 (𝑣) = 0, for each 𝑣 ∈ 𝑉 ;

StatusCR: (𝑐 (𝑣), 𝑐′ (𝑣)) ⇒ min(𝑐 (𝑣), 𝑐′ (𝑣)) .
Function PEval (fragment 𝐹𝑖) :
1 𝑈 := ∅; Π := { (𝑣, ∅) | 𝑣 ∈ 𝑉𝑖 };
2 EApply((⟨𝑢, 𝑣⟩ ∈𝐸𝑖)⇒𝑈 .add(min𝑖∈{𝑢,𝑣} 𝑐 (𝑖)) if 𝑐 (𝑢) = 𝑐 (𝑣)) ;
3 if 𝑈 is empty then return 𝑅𝑖 ;

4 EApply ((⟨𝑢, 𝑣⟩ ∈ 𝐸𝑖 ,𝑢 ∈ 𝑈) ⇒ Π[𝑣] .add(𝑐 (𝑢)));
5 VApply ((𝑣 ∈ 𝑈) ⇒ set 𝑐 (𝑣) to the first color not in Π[𝑣]);
6 return 𝑅𝑖 = (𝐹𝑖 , 𝑆 ′ (𝐹𝑖)) , where 𝑆 ′ (𝐹𝑖) contains updated 𝑐 ;
Function IncEval (partial result 𝑅𝑖 , updates Ψ[𝐹𝑖]) :
7 VApply((∀𝑣 ∈ Ψ[𝐹𝑖] (𝑐)) ⇒ 𝑐 (𝑣) := Ψ[𝐹𝑖] (𝑐 (𝑣))) ;
8 repeat Line 1–6 of function PEval; return 𝑅𝑖 ;

scalable. This is because algorithm APR is inherently defined by

message passing and requires an aggregation operation at each

vertex, which typically leads to stragglers. More specifically, the

aggregation sums up all 𝑑− (𝑣) incoming ranks at each vertex 𝑣 ,

where 𝑑− (𝑣) is the in-degree of 𝑣 . Over a “hub” vertex 𝑣 with a large
𝑑− (𝑣) (e.g.,𝑑− (𝑣) ≥ 1, 000, 000 is common for real-world power-law

graphs), the computation can bottleneck the entire PR iteration.

This issue is particularly serious for VC/EC, because the aggre-
gation at a “hub” can only be carried out in a sequential manner.

Planar, on the contrary, can further mitigate the stragglers by par-

allelizing the summation calculation, thanks to its more flexible

organization of auxiliary data structures.

(2) Out-of-core. Since Planar and VC execute the same algorithm,

they incur the same amount of disk I/O asymptotically. Nevertheless,

Planar may still incur less disk I/O than VC, since it only loads

“inactive” blocks for processing in each round.

3. Vertex Coloring (Coloring). Given an undirected graph

𝐺 = (𝑉 , 𝐸), Coloring is to assign a color to each vertex in 𝑉 , such

that no two neighboring vertices share the same color.

Outline. Planar takes the PRAM algorithm of [33] as AColor, as

shown in Algorithm 6. In each iteration, AColor greedily assigns

colors to vertices in parallel [92]; it revisits and fixes invalid coloring,

i.e., conflicts, in the next iteration. More specifically, PEval executes
AColor over each vertex-cut subgraph 𝐹𝑖 of 𝐺 . It declares vertex

status 𝑆𝑉 to include the same initial coloring for each vertex (Line 1).

It maintains a vertex set𝑈 , which includes “active” vertices with

conflicts, and a hashmap Π, which keeps the forbidden colors for
each vertex. In each iteration, PEval (1) checks all edges in parallel,

adding active vertices to 𝑈 (Line 2); (2) aggregates the forbidden

colors of vertices in𝑈 (Line 4); and (3) assigns each vertex in𝑈 the

first color that is not forbidden (Line 5).

Function IncEval repeats PEval over active vertices triggered by

the changes to border nodes, until no more conflicts can be found.

At this point, Assemble returns the final coloring.

Benefits over VC. While parallel models support algorithm AColor,

they perform differently for the same reasons given above.

(1) In-memory. Planar does the same amount of work as VC does.

However, Planar retains the parallel scalability of AColor, while

VC does not. This is because VC performs message aggregation

operations over “hub” vertices, which often lead to stragglers. This

further shows the benefit of “flat” data accesses of PRAM.

(2) Out-of-core. Since Planar and VC execute the same algorithm,

Algorithm 7:MST in Planar.
Status Declaration: 𝑆𝑉 = {𝑝, 𝑒 } where 𝑝 (𝑣) = 𝑣, 𝑒 (𝑣) = null for each

𝑣 ∈ 𝑉 , 𝑆𝐺 = {𝐸𝑇 }, where 𝐸𝑇 is initialized as an empty

edge set;

StatusCR: (𝑝 (𝑣), 𝑝′ (𝑣)) ⇒ min{𝑝 (𝑣), 𝑝′ (𝑣) },
(𝑒 (𝑣), 𝑒′ (𝑣)) ⇒ arg min𝑥 ∈{𝑒 (𝑣),𝑒′ (𝑣) } 𝐿 (𝑥) .

Function PEval (fragment 𝐹𝑖) :
1 VApply((∀𝑣 ∈ 𝑉𝑖) ⇒ 𝑒 (𝑣) := arg min𝑥 ∈{⟨𝑣,𝑢⟩|𝑢∈𝑁𝑏𝑟 (𝑣) } 𝐿 (𝑥)) ;
2 return 𝑅𝑖 = (𝐹𝑖 , 𝑆 ′ (𝐹𝑖)) , where 𝑆 ′ (𝐹𝑖) contains updated 𝑒 ;
Function IncEval (partial result 𝑅𝑖 , updates Ψ[𝐹𝑖]) :
3 VApply((∀𝑣 ∈ 𝑉𝑖) ⇒ 𝐸𝑇 := 𝐸𝑇 ∪ {𝑒 (𝑣) };Graft(𝑒 (𝑣))) ;
4 VApply((∀𝑣 ∈ 𝑉𝑖) ⇒ PointerJump(𝑣)) ;
5 EApply((∀𝑒 ∈ 𝐸𝑖) ⇒ Contract(𝑒) ;) ;
6 VApply((∀𝑣 ∈ 𝑉𝑖) ⇒ 𝑒 (𝑣) := arg min𝑥 ∈{⟨𝑣,𝑢⟩|𝑢∈𝑁𝑏𝑟 (𝑣) } 𝐿 (𝑥)) ;
7 VApply((∀𝑣 ∈ Ψ[𝐹𝑖] (𝑐)) ⇒ 𝑐 (𝑣) := Ψ[𝐹𝑖] (𝑐 (𝑣))) ;
8 return 𝑅𝑖 = (𝐹𝑖 , 𝑆 ′ (𝐹𝑖)) ;

they incur the same amount of disk I/O asymptotically.

4. Minimum Spanning Tree (MST). Consider a connected, undi-
rected graph 𝐺 = (𝑉 , 𝐸, 𝐿), whose label 𝐿(𝑒) ∈ N+

denotes the

weight for edge 𝑒 ∈ 𝐸. A spanning tree is a subgraph 𝑇 = (𝑉 , 𝐸𝑇 , 𝐿)
where 𝐸𝑇 ⊆ 𝐸 of 𝐺 such that 𝑇 is a tree. The weight𝑤 (𝑇) of tree
𝑇 is the sum of all edge weights, i.e.,𝑤 (𝑇) = ∑

𝑒∈𝐸𝑇 𝐿(𝑒). A span-

ning tree with the minimum possible weight is called a minimum
spanning tree of 𝐺 . For such a graph 𝐺 with multiple connected

components, MST is to compute the minimum spanning trees of

all connected components in the graph.

Outline. Planar takes a parallel version of Sollin’s PRAM algorithm

[13] as AMST. As shown in Algorithm 7, AMST is based on an idea

similar to that of the WCC algorithm A presented in Example 1. It

starts from a pseudo-forest of𝐺 , and iteratively merges two pseudo

trees Λ(𝑟) and Λ(𝑟 ′) that are connected via a set 𝐸𝑟,𝑟 ′ of edges, and
adds the edge 𝑒 ∈ 𝐸𝑟,𝑟 ′ with the minimum weight to 𝐸𝑇 .

(1) PEval declares the following in 𝑆𝑉 : (a) parent 𝑝 (𝑣) for each vertex
𝑣 , initialized as itself; and (b) the smallest-weight edge 𝑒 (𝑣) for each
vertex 𝑣 , initialized as null. The parent pointers in 𝑝 constitute a

pseudo-forest of𝐺 , a collection of pseudo-trees as used inWCC (see

Example 1). PEval scans all vertices in parallel, and sets 𝑒 (𝑣) for each
vertex 𝑣 such that 𝑒 (𝑣) is the minimum-weight edge incident to 𝑣 .

(2) IncEval. In each IncEval round, it first handles incoming mes-

sages for each border vertex 𝑣 : (a) it updates local 𝑝 (𝑣) if themessage

contains a smaller parent ID; and (b) it updates local 𝑒 (𝑣) if the
message contains a lower-weight edge. After these, IncEval then
proceeds in four stages as follows. (1) Grafting: parallel for each

vertex 𝑣 in 𝑉𝑖 , it adds 𝑒 (𝑣) to 𝐸𝑇 , and merges pseudo trees that are

connected by 𝑒 . (2) Pointer jumping: this step is similar toWCC. (3)
Contracting: parallel for each edge, it removes the ones internal to

a pseudo tree. (4) Maintenance: parallel for each vertex 𝑣 , it updates

𝑒 (𝑣) with the minimum-weight remaining edge incident to 𝑣 .

(3) Assemble. It returns all selected edges as the minimum spanning

tree 𝑇 of graph 𝐺 when no more changes can be made.

Benefits over VC. A common VC algorithm forMST is a parallelized

version of Prim’s algorithm [76], which works as an extension to

HashMin (see Section 3.3). Given a graph 𝐺 = (𝑉 , 𝐸, 𝐿), during the

label propagation stage, each vertex maintains the lightest incident

edge from which a label-updating message is sent. All these edges

form an MST once label propagation has reached a fixpoint.

17

Algorithm 8: RW in Planar.
Status Declaration: 𝑆𝑉 = {𝑊 } where each column of𝑊 (denoted by

�̄� (𝑣), ∀𝑣 ∈ 𝑉) is an 𝑙-dimension, all-zero array;

𝑆𝐺 = {𝑝, 𝑐 }, where 𝑝 and 𝑐 are both 𝑛-dimension arrays,

indicating that walker 𝑖’s position is 𝑝 [𝑖] after 𝑐 [𝑖] steps;
StatusCR: (�̄� (𝑣) [𝑖], �̄�′ (𝑣) [𝑖]) ⇒ rand(�̄� (𝑣) [𝑖], �̄�′ (𝑣) [𝑖]) ;
Function PEval (fragment 𝐹𝑖) :
1 VApply((∀𝑣 ∈ 𝑉𝑖) ⇒ �̄� (𝑣) [𝑘] := rand(𝑁𝑏𝑟+ (𝑘)), ∀𝑘 ≤ 𝑙) ;
2 return 𝑅𝑖 = (𝑉𝑖 , 𝑆 ′ (𝐹𝑖)) , where 𝑆 ′ (𝐹𝑖) contains updated𝑊 ;

Function IncEval (partial result 𝑅𝑖 , updates Ψ[𝐹𝑖]) :
3 VApply((∀𝑣𝑘 = 𝑝 [𝑘]) ⇒ GreedyAdvance(𝑘,𝑉𝑖)) ;
4 return 𝑅𝑖 = (𝑉𝑖 , 𝑆 ′ (𝐹𝑖)) , where 𝑆 ′ (𝐹𝑖) contains updated 𝑝 ;
Procedure GreedyAdvance (𝑘,𝑉𝑖):
5 while 𝑘 ≤ 𝑙 and 𝑝 [𝑘] ∈ 𝑉𝑖 do
6 𝑝 [𝑘] :=𝑊 (𝑝 [𝑘]) [𝑘];
7 𝑘 := 𝑘 + 1;

(1) In-memory. Let 𝐷 denote the diameter of graph 𝐺 . Planar
does at most 𝑂 (|𝑉 |2) total amount of work; in contrast, VC does

𝑂 ((|𝑉 | + |𝐸 |)𝐷) amount of work. The reduced computation cost

stems from the graph contracting operations, which shrink the

graph size (possibly exponentially) in each iteration.

NeitherAMST nor the VC algorithm is parallelly scalable relative

to a sequential MST algorithm, which finishes the computation

in 𝑂 (|𝐸 | log |𝑉 |) time. Both AMST and the VC algorithm incur

redundant work for parallelization. That said, both guarantee a

linear speedup when using up to |𝑉 | cores [44].
(2) Out-of-core. Given a partition F = (𝐹1, . . . , 𝐹𝑚) of graph 𝐺 ,
Planar computes MST in at most ⌈log min{𝑚,𝐷}⌉ rounds, but

VC can take as many as 𝐷 rounds. Similar to the case of WCC,
the parallel model of Planar supports beyond-neighborhood

computation of GC and shrinking graph size.

5. Random Walk. We then study the graph (massive) random

walk (RW) problem. Given a graph 𝐺 = (𝑉 , 𝐸), 𝑛 = |𝑉 | walkers
and a number 𝑙 of walk length, RW is to find the terminal positions

of these 𝑛 walkers, where each walker (1) is initially placed on a

different vertex of 𝐺 ; (2) uniformly samples an out-neighbor of the

current vertex randomly and jumps to that vertex for each step it

takes; and (3) terminates its walk after 𝑙 steps.

Outline. Planar takes the PRAM algorithm of [46] as ARW. As

shown in Algorithm 8, instead of moving each walker step by step,

algorithm ARW performs batch sampling from each vertex. It first

samples an 𝑙 × |𝑉 | matrix𝑊 , where𝑊𝑖, 𝑗 denotes the (𝑖 + 1)-th stop

for a walker stationed at vertex 𝑗 after taking 𝑖 steps. Then, the

algorithm moves each walker based on pre-sampled𝑊 .

Function PEval declares an 𝑙-dimension array �̄� (𝑣) for each
vertex 𝑣 in the vertex status 𝑆𝑉 . In other words, 𝑆𝑉 stores matrix

𝑊 by columns. Over a vertex-cut subgraph 𝐹𝑖 = (𝑉𝑖 , 𝐸𝑖), it samples

in parallel to fill each element in �̄� (𝑣). For conflicting �̄� (𝑣) values
of a border vertex 𝑣 , it decides the winner of each element in �̄� (𝑣)
randomly, with a probability weighted by the number of edges

incident to 𝑣 within fragment 𝐹𝑖 . Function IncEval overrides �̄� (𝑣)
with the conflict-free message for a border vertex 𝑣 , and moves

walkers initiated in 𝐹𝑖 based on pre-sampled matrix𝑊 (i.e., 𝑆𝑉).
Finally, function Assemble returns the final stations of all 𝑛 walkers.

Benefits over VC. A VC algorithm for RW simply moves each

worker by exactly one step in a round of computation. Given a

graph 𝐺 = (𝑉 , 𝐸) and 𝑛 walkers, it completes random walk in 𝑙

rounds, while in each round, a walker step is performed via on-

demand sampling of an out-edge. Observe the following.

(1) In-memory. BothARW and theVC algorithm advance all walkers

to their terminal positions in exactly𝑂 (𝑙 |𝑉 |) moves. Moreover, both

are parallelly scalable in theory, having a linear speedupwhen using

up to |𝑉 | processors. This said, algorithm ARW can be executed

more efficiently on modern architectures, since its workflow has

much better locality via batch sampling.

(2) Out-of-core. Given partition F = (𝐹1, . . . , 𝐹𝑚), Planar incurs
much less disk I/O than its VC counterpart when the computation

is out-of-core for the following two reasons. (a) It runs in fewer I/O

rounds. Since ARW advances walkers within each subgraph greed-

ily, its computation takes at most min{𝑚, 𝑙} rounds; in contrast, VC
takes exactly 𝑙 rounds. (b) For each IncEval round, it only needs to

load partial status 𝑅𝑖 = (𝑉𝑖 , 𝑆 (𝐹𝑖)), without the edge data from the

disk. This results in much less I/O demand for each round.

A.3 Comparison with MiniGraph
Continuing withWCC in Examples 2–4, we further compare the

parallel model of Planarwith the hybrid model ofMiniGraph [106].

Example 10:MiniGraph parallelizes BFS forWCC. It solves intra-
subgraph parallelism via VC, allowing concurrent neighbor visits
at each vertex. This creates data dependencies, which limit paral-

lelism and scalability. In contrast, Planar fully exploits hardware

concurrency by leveraging the “flat” data accesses of PRAM. 2

In contrast to the two-level hybrid model of MiniGraph [106],

(1) Planar plugs in PRAM algorithms and utilizes multi-core SIMD

parallelism, which fits intra-subgraph parallelism better than VC
adopted byMiniGraph (see Section 5); (2) it directly uses decades

of work on PRAM algorithms, not requiring a manual code re-

vamp; and (3) it simplifies the execution model of MiniGraph (see

Section 4), without asking for delicate tuning efforts.

B PROOF OF THEOREM 1
We study the decision problem of the partitioning problem of Sec-

tion 4.2, denoted by DPSP and stated as follows.

◦ Input: Planar program A, graph𝐺 , the round cost function 𝐶 𝑗

(Section 4) for round 𝑗 , an integer𝑚, a memory usage function

𝑀A , memory capacity 𝐵, and a cost threshold 𝜂.

◦ Question: Does there exist a valid𝑚-partition F = (𝐹1, . . . , 𝐹𝑚)
such that its peak memory usage is at most 𝐵, i.e., 𝑀A (𝐹𝑖) +
𝑀A (𝐹𝑖+1) ≤ 𝐵 for all 𝑖 ∈ [0,𝑚−1], and its round cost is bounded
by 𝜂, i.e., 𝐶 𝑗 (𝐹𝑖) ≤ 𝜂?

Proof of NP-hardness. We verify the NP-hardness of DPSP by

reduction from 3-partition problem, which isNP-complete (cf. [32]).

That is, DPSP is intractable when𝑚 is a fixed constant 3. The 3-

partition problem is to decide, given a finite set𝐴 of positive integers

whose element sum is 3𝑆 , whether there exists a 3-partition such

that each partition adds up to 𝑆 . In other words, it is to decide

whether there exist three disjoint subsets 𝐴1, 𝐴2, 𝐴3 ⊆ 𝐴 of equal

sum, such that their union is equal to 𝐴. More specifically, the

requirements are (1) disjoint constraint, i.e., 𝐴1 ∩𝐴2 = 𝐴2 ∩𝐴3 =

𝐴1 ∩ 𝐴3 = ∅; (2) union constraint, i.e., 𝐴1 ∪ 𝐴2 ∪ 𝐴3 = 𝐴; and (3)

equal sum constraint i.e.,
∑
𝑎∈𝐴1

𝑎 =
∑
𝑏∈𝐴2

𝑏 =
∑
𝑐∈𝐴3

𝑐 = 𝑆 .

18

Given a set of 𝑛 positive integers 𝐴 = {𝑎1, . . . , 𝑎𝑛} with Σ𝑛
𝑖=1
𝑎𝑖 =

3𝑆 , we construct a graph 𝐺 , a Planar program A, a positive inte-

ger𝑚, two positive numbers 𝐵 and 𝜂, a memory usage function

𝑀𝐴 (𝐹𝑖) and a round cost function𝐶 𝑗 (F) such that the set𝐴 can be

partitioned into disjoint𝐴1,𝐴2 and𝐴3 of sum 𝑆 each iff𝐶 𝑗 (F) ≤ 𝜂
and 𝑀A (𝐹𝑖) +𝑀A (𝐹𝑖+1) ≤ 𝐵, for 𝑖 ∈ [1,𝑚 − 1]. We w.l.o.g. write∑𝑥1

𝑖=1
𝑎𝑖 =

∑𝑥2

𝑖=𝑥1+1
𝑎𝑖 =

∑𝑛
𝑖=𝑥2+1

𝑎𝑖 = 𝑆 , where 1 ≤ 𝑥1 ≤ 𝑥2 ≤ 𝑛.
Next we present our construction details.

(1) Graph. We build a directed, connected graph𝐺 = (𝑉 , 𝐸, 𝐿) with
|𝑉 | = 3𝑆 vertices and |𝐸 | = 3𝑆 edges. It consists of 𝑛 disjoint directed
cycles; the length of the 𝑖-th cycle is equal to 𝑎𝑖 . More specifically,

denote by 𝐾𝑥 a length-𝑥 directed cycle. We consider a self loop as

a length-1 cycle 𝐾1. If both directed edges ⟨𝑣, 𝑣 ′⟩ and ⟨𝑣 ′, 𝑣⟩ exist, it
constitutes a length-2 cycle 𝐾2; so on and so forth.

It is easy to see that graph 𝐺 has the following properties. (a)

For each 𝑖 ∈ [1, 𝑛], there exists a directed cycle 𝐾𝑎𝑖 . Apparently,

𝐾𝑎𝑖 is a subgraph of 𝐺 . (b) For any pair 𝑖, 𝑗 ∈ [1, 𝑛] and 𝑖 ≠ 𝑗 , their

corresponding cycles 𝐾𝑎𝑖 and 𝐾𝑎 𝑗
have no shared entities.

(2) Planar program A. We consider an inference algorithm for

Graph Convolutional Network (GCN) [54] over graph 𝐺 . Here we

start with a brief overview of such an algorithm.

Consider graph 𝐺 = (𝑉 , 𝐸, 𝐿), where 𝐿 ∈ R𝑙×|𝑉 |
is the node

feature matrix (i.e., 𝐿(𝑣) ∈ R𝑙 is the feature vector of 𝑣 ∈ 𝑉). A
𝑘-layer GCN is to compute the node embedding ℎ(𝑣) = ℎ𝑘 (𝑣) of
each 𝑣 ∈ 𝑉 ; its 𝑖-th layer embedding ℎ𝑖 (𝑣) ∈ R𝑙 , such that

ℎ0 (𝑣) = 𝐿(𝑣), (4)

ℎ𝑖 (𝑣) = 𝜎 (𝑊𝑖

|𝑁 (𝑣) |
∑︁

𝑢∈𝑁 (𝑣)
ℎ𝑖−1 (𝑢) + 𝐵𝑖ℎ𝑖−1 (𝑣)), 𝑖 ∈ {1, . . . , 𝑘}.

(5)

Here ℎ𝑖−1 (𝑣) is the node embedding of 𝑣 from the previ-

ous layer, 𝑁 (𝑣) is the set of neighbors of 𝑣 . The purpose of

1

|𝑁 (𝑣) |
∑
𝑢∈𝑁 (𝑣) ℎ

𝑖−1 (𝑢) is to aggregate neighboring features of

𝑣 from the previous layer. Moreover, 𝜎 is the activation function

(e.g. ReLU) to introduce non-linearity;𝑊𝑖 ∈ R𝑙×𝑙 and 𝐵𝑖 ∈ R𝑙×𝑙 are
the trainable parameters at the 𝑖-the layer.

Program A is a round of forward-pass computation in GCN. It

applies Equation 5 to each 𝑣 ∈ 𝑉 . Observe the following:
◦ the computational cost for the round using 𝑝 processors is

𝐶A (𝐹𝑖 , 𝑝) = 𝑙3 |𝑉𝑖 | + 𝑙3 |𝐸𝑖 |;
◦ the size of partial state is |𝑅𝑖 | = 𝑙 |𝑉𝑖 | + |𝐸𝑖 |;
◦ its peak memory usage is𝑀A (𝐹𝑖) = 𝑙 |𝑉𝑖 | + |𝐸𝑖 |; and
◦ its I/O cost is IO(𝐹𝑖) = 𝑙 |𝑉𝑖 | + |𝐸𝑖 |.
Note that a forward-pass round can be either CPU-bound or

I/O bound, depending on the values of feature dimension 𝑙 .

(a) For a large 𝑙 such that a round is CPU-bound, the round cost is

𝐶 𝑗 (F) = 𝑙3 ∑𝑚
𝑖=1

(|𝑉𝑖 | + |𝐸𝑖 |) + 𝑙 |𝑉1 | + |𝐸1 |.
(b) For a small 𝑙 such that a round is I/O-bound, the round cost is

𝐶 𝑗 (F) = ∑𝑚
𝑖=1

(𝑙 |𝑉𝑖 | + |𝐸𝑖 |) + 𝑙3 (|𝑉𝑚 | + |𝐸𝑚 |).

(3) Other parameters. We set 𝑚 = 3 and 𝐵 = 2(𝑙 + 1)𝑆 . We set

𝜂 based on the system bottleneck. (a) For a CPU-bound round,

𝜂 = (6𝑙3 + 𝑙 + 1)𝑆 . (b) For an I/O-bound round, 𝜂 = (2𝑙3 + 3𝑙 + 3)𝑆 .
Intuitively, these require that partition F includes three sub-

0.4 0.6 0.8 1.0
Scale factor

500

1000

1300

Ti
m

e
(s

)

(a) Vary |𝐺 | , in-memory, Coloring.

0.4 0.6 0.8 1.0
Scale factor

20

40

60

Ti
m

e
(s

)

(b) Vary |𝐺 | , in-memory, PR.

Figure 5: Additional experimental results.

graphs 𝐹1, 𝐹2, 𝐹3, where𝑀A (𝐹𝑖)+𝑀A (𝐹𝑖+1) ≤ 𝐵 for 𝑖 ∈ {1, 2}. This
is, partition F = (𝐹1, 𝐹2, 𝐹3) does not break any cycle 𝐾𝑎𝑖 in graph

𝐺 ; otherwise, it would produce duplicates (vertices and/or edges)

and exceed the memory bound. In other words, a valid partition

must distribute cycle𝐾𝑎𝑖 to one of fragments 𝐹1, 𝐹2 or 𝐹3 (𝑖 ∈ [1, 𝑛]).
We next verify the correctness of our reduction.

(⇒) Suppose that the set 𝐴 can be partitioned into subsets 𝐴1, 𝐴2

and 𝐴3 of equal sum. We have that

∑𝑥1

𝑖=1
𝑎𝑖 =

∑𝑥2

𝑖=𝑥1+1
𝑎𝑖 =∑𝑛

𝑖=𝑥2+1
𝑎𝑖 = 𝑆 . Thus, we construct partition F as

𝐹1 : ∪𝑥1

𝑖=1
𝐾𝑎𝑖 ;

𝐹2 : ∪𝑥2

𝑖=𝑥1+1
𝐾𝑎𝑖 ;

𝐹3 : ∪𝑛𝑖=𝑥2+1
𝐾𝑎𝑖 .

One can verify that F = (𝐹1, 𝐹2, 𝐹3) is a valid partition that satisfies

both the memory constraint and the cost threshold.

(⇐) Conversely, suppose that partition F = (𝐹1, 𝐹2, 𝐹3) satisfies
both the memory constraint and the cost threshold. This implies

that 𝑀A (𝐹1) +𝑀A (𝐹2) = 𝑀A (𝐹2) +𝑀A (𝐹3) = 𝐵; therefore, we
have that |𝑉𝑖 | = |𝐸𝑖 | = 𝑆 for 𝑖 ∈ {1, 2, 3}. Consider w.l.o.g. that 𝐹1

consists of 𝑘1 cycles 𝐾𝑥1
, 𝐾𝑥2

, . . . , 𝐾𝑥𝑘
1

, 𝐹2 consists of (𝑘2 − 𝑘1)
cycles 𝐾𝑥𝑘

1
+1
, 𝐾𝑥𝑘

1
+2, . . . , 𝐾𝑥𝑘

2

, and 𝐹3 consists of (𝑛 − 𝑘2) cycles
𝐾𝑥𝑘

2
+1
, 𝐾𝑥𝑘

2
+2, . . . , 𝐾𝑥𝑛 . Here we construct

𝐴1 = {𝑥1, 𝑥2, . . . , 𝑥𝑘1
},

𝐴2 = {𝑥𝑘1+1
, 𝑥𝑘1+2

, . . . , 𝑥𝑘2
},

𝐴3 = {𝑥𝑘2+1
, 𝑥𝑘2+2

, . . . , 𝑥𝑛}.

One can verify that each of 𝐴1, 𝐴2 and 𝐴3 has a sum of 𝑆 , which

makes a valid 3-partition of 𝐴. 2

C PRAM SIMULATION
Over an input graph 𝐺 = (𝑉 , 𝐸, 𝐿), a PRAM algorithm A typically

assumes the availability of as many as 𝑃 (|𝑉 |, |𝐸 |) processors, where
𝑃 (|𝑉 |, |𝐸 |) is a polynomial of |𝑉 | and |𝐸 |; this is beyond reach in

practice. In light of this, we simulate PRAM by executing A using

a constant 𝑝 cores via multiplexing and dynamic load balancing.

A PRAMalgorithmA specifies a sequence of lockstep operations,

where each operation can be decomposed into at most 𝑃 (|𝑉 |, |𝐸 |)
independent tasks. To simulateA at a machine with 𝑝 of CPU cores,

Planar runs lockstep operations sequentially, with implicitly placed

barriers among consecutive ones; all independent tasks in the same

lockstep are parallelizable and executed by a size-𝑝 thread pool.

More specifically, the simulation works as follows. (1) For each

lockstep operation, its 𝑃 (|𝑉 |, |𝐸 |) independent tasks are multiplexed

using 𝑝 parallel threads. (2) As soon as all tasks within a parallel op-

eration are concluded, all 𝑝 threads in the thread pool synchronize

19

via a barrier, which is automatically placed by Planar via a con-

ditional variable primitive. (3) The thread pool proceeds with the

next operation in sequence, until all locksteps of A are completed.

For load balance within a lockstep operation, all independent,

parallelizable tasks are initially placed in a task queue (whose

size is at most 𝑃 (|𝑉 |, |𝐸 |)). Threads in the size-𝑝 thread pool work

asynchronously to consume this queue. Since each task is small

in size, this mechanism ensures that all threads are mostly busy

until completion. To minimize contention on the task queue, we

implement it using a lock-free queue primitive (see Section D for

how to support concurrent data accesses).

D SYSTEM IMPLEMENTATION
We next outline the implementation of Planar.

Architecture & key modules. Figure 6 depicts the architecture of
system Planar, where the arrows indicate data flow among modules.

It separates the data processingmodules, which load the input graph

and carry out computation over it, from the control modules, which

manage and optimize the execution workflow.

Data processing modules. Planar implements a data pipeline that

continuously reads from and writes to the secondary storage. As

mentioned earlier, it partitions the memory into an off-stage area

and an on-stage area to overlap CPU and I/O operations.

(1) Off-stage area. This area provides a buffering space for block

loading and discharging. It has two modules. (a) BlockGrouper
loads blocks into the memory and, when instructed by Scheduler,
submits a block grouping to Executors. (b) BlockWriter persists the
produced partial states at the disk, which includes both the subgraph

𝐹𝑖 and its associated status 𝑆 (𝐹𝑖). Using dedicated threads, they

perform asynchronous I/O via io_uring to maximize throughput.

To make space for new blocks, off-stage area first reclaims mem-

ory from unchanged stale blocks to reduce disk writes; it persists

and evicts updated status 𝑆 (𝐹𝑖) only when necessary. Moreover, it

adopts incremental writing; that is, it rewrites only the updated

parts of a stale partial state. For example, when the topology of 𝐹𝑖
remains unchanged, it persists only the differences of the updated

status 𝑆 (𝐹𝑖). Both strategies mitigate I/O interference [45] on SSDs.

(2) On-stage area. This area acts like shared memory for PRAM.

Executors employ 𝑝 threads to process a block grouping. Logically,

they treat all blocks in a group as a single subgraph. For an entity

shared among multiple blocks, we make changes to a master copy;

the changes are synchronized to all copies at the end of the round.

UpdateCache is a global key-value store, which hosts updates

Ψ in memory (see Section 3). With a bounded size, it caches as

many ephemeral updates in memory as possible and uses secondary

storage only when necessary. In our experiments over various

graphs, a small portion (e.g., 10%) of the memory capacity suffices.

Control modules. Planar has 3 control modules. (1) ConfigManager
maintains system configs and the profiling results, i.e., the PEval
cost andmodel𝑀A , making updates at background (see Section 4.2).

(2) StateManager tracks “active” blocks that are pending processing
within each round; at the end of each round, it checks updates in

UpdateCache and decides whether to conclude computation by

triggering Assemble. (3) Scheduler adjusts partitioning and sched-

uling at runtime (see Section 4.3), i.e., block grouping and adaptive

Planar PartitionerSecondary Storage (HDD, SSD, etc.)

System
Planar

Off-Stage Area

On-Stage Area

Control Modules

BlockGrouper

StateManager

BlockWriter

Scheduler

UpdateCache Executors

APIs
PEval IncEval Assemble

EApply VApply MutateStatus Declaration

ConfigManager

Figure 6: Planar architecture.

scheduling. It actively monitors runtime statistics, maintains the

dependency graph w.r.t. graph blocks, makes scheduling decisions,

and issues the decisions to data processing modules.

Partitioner. It implements the speculative partitioner of Section 4.3,

storing subgraphs in an optimized Compressed Sparse Row format.

The format is more compact than the ones used in prior systems

[65, 106], since we have removed some data redundancies, by

compressing the vertex ID offsets into shorter bit sequences.

PRAM simulation. The theoretical model of PRAM assumes a

polynomial number of processors [7, 38], which is beyond the reach

of a machine in practice. To bridge the gap, we simulate PRAM

with a physical machine with 𝑝 CPU cores as follows.

Synchronization. As mentioned earlier, to guarantee the correctness

of simulation, we (1) place an implicit synchronization barrier after

each parallel operator, i.e., VApply or EApply; and (2) ensure that

all read accesses precede any write within each parallel operator.

Planar implements these with versioned data accesses. More

specifically, we consider w.l.o.g. a VApply operation that mutates

vertex status 𝑆𝑉 . Entering VApply, a copy 𝑆 ′𝑉 of 𝑆𝑉 is created. Dur-

ing VApply, Planar reads from 𝑆𝑉 and writes to 𝑆 ′
𝑉
. Finally when

VApply concludes, the stale status 𝑆𝑉 is replaced with the new 𝑆 ′
𝑉
.

To avoid duplication and reduce memory overhead, we create a

new version of an element on-demand only when it updates.

Planar has two versions of updates Ψ in UpdateCache: Ψpre for
the last round, and Ψcur for the current. A round starts by fetching

from Ψpre, and ends with aggregating new border updates into Ψcur.

Load balancing. Each parallel operator can generate a number of

independent, parallel tasks. To allocate these tasks to 𝑝 proces-

sors with balanced workload, we employ a size-𝑝 thread pool in

Executors. Initially, all generated tasks are placed in a task queue.

Each thread then polls the task queue whenever it becomes idle, and

executes the obtained task. To reduce contention on the task queue,

we group multiple tasks into a package, and a thread consumes

an entire task package for each poll. The packaging granularity is

dynamically determined heuristically based on 𝑝 and the task size.

Lock-free parallelism. To further optimize parallel performance,

Planar exploits lock-free parallelism. Consider concurrent writes to

data Φ. If Φ cannot be implemented using an atomic data structure,

we adopt the copy-on-write technique. That is, whenever a thread

attempts to modify Φ, it creates a thread-local copy Φ′
of Φ, writes

new value to Φ′
, and makes an atomic switch from the old to the

new. Such fine-gained copy-on-write technique is known to reduce

write contentions and improve parallel performance [12, 81].

Failure recovery. While single-machine systems inherently

present a single point of failure, Planar offers a unique advantage
in resilience compared to existing single-machine graph analytic

systems. The previous systems typically maintain all intermediate

20

states in memory without any persistence mechanism and thus

lack the ability to recover quickly after a failure.

More specifically, Planar has a built-in capability for faster re-

covery from failures. Unlike other systems, Planar persists both the

status data and graph data to external storage at each round of com-

putation (Section 3.2). This approach effectively creates checkpoints

that capture the state of the computation at various stages. In the

event of a machine failure, Planar can utilize these checkpoints to

resume operations from the last saved state (i.e., the last completed

round), rather than restarting the computation from the beginning.

The only lost progress would be the unfinished round at the time

of failure, whose border updates are cached in-memory and cannot

be recovered. This mechanism can significantly reduce redundant

computations and minimize the recovery time required to restore

the system to its previous state.

By maintaining these persistent checkpoints, Planar ensures
that even in the event of a failure, the progress made is not entirely

lost, thereby offering a more robust solution for large-scale graph

analytics on single machines. It provides ameaningful improvement

in reliability and operational continuity in scenarios where single-

machine setups are preferred for their cost-effectiveness.

E ADDITIONAL EXPERIMENTAL RESULTS
Varying the size of in-memory graph 𝐺 , Figure 5 shows the perfor-

mance of Planar in comparison withMiniGraph andGalois. Planar
consistently outperforms the baselines in both Coloring and PR,
regardless of the graph size.

21

	Abstract
	1 Introduction
	2 Preliminaries
	3 A Parallel Computation Model
	3.1 Programming with Planar
	3.2 Parallel Model
	3.3 Planar vs. VC/EC and GC

	4 Partitioning and Scheduling
	4.1 Challenges
	4.2 Partitioning and Scheduling Problem
	4.3 Partitioning and Scheduling Strategies

	5 Experimental Study
	6 Conclusion
	References
	A Programming with Planar
	A.1 Correctness
	A.2 Case Studies
	A.3 Comparison with MiniGraph

	B Proof of Theorem 1
	C PRAM Simulation
	D System Implementation
	E Additional Experimental Results

